{"title":"语用空时码的协同中继","authors":"A. Conti, V. Tralli, M. Chiani","doi":"10.1109/ICCW.2008.73","DOIUrl":null,"url":null,"abstract":"The construction of space-time codes for wireless cooperative communications is investigated by considering a pragmatic approach based on the concatenation of convolutional codes and BPSK/QPSK modulation to obtain cooperative codes for relay networks. We also derive the pairwise error probability, an asymptotic bound for frame error probability and a design criterion to optimize both diversity and coding gain. This framework is useful to characterize the behavior of cooperative pragmatic space-time codes (CP-STC) and to set up a code search procedure to obtain good pragmatic space-time codes (P-STC) with overlay construction (COP-STC) which are suitable for cooperative communication with a variable number of relays in quasi static channel. We find that P-STCs perform quite well in block fading channels, including quasi-static channel, even with a low number of states and relays, despite the fact that the implementation of P-STC requires common convolutional encoders and Viterbi decoders with suitable generators and rates, thus having low complexity.","PeriodicalId":360127,"journal":{"name":"ICC Workshops - 2008 IEEE International Conference on Communications Workshops","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cooperative Relaying with Pragmatic Space-Time Codes\",\"authors\":\"A. Conti, V. Tralli, M. Chiani\",\"doi\":\"10.1109/ICCW.2008.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The construction of space-time codes for wireless cooperative communications is investigated by considering a pragmatic approach based on the concatenation of convolutional codes and BPSK/QPSK modulation to obtain cooperative codes for relay networks. We also derive the pairwise error probability, an asymptotic bound for frame error probability and a design criterion to optimize both diversity and coding gain. This framework is useful to characterize the behavior of cooperative pragmatic space-time codes (CP-STC) and to set up a code search procedure to obtain good pragmatic space-time codes (P-STC) with overlay construction (COP-STC) which are suitable for cooperative communication with a variable number of relays in quasi static channel. We find that P-STCs perform quite well in block fading channels, including quasi-static channel, even with a low number of states and relays, despite the fact that the implementation of P-STC requires common convolutional encoders and Viterbi decoders with suitable generators and rates, thus having low complexity.\",\"PeriodicalId\":360127,\"journal\":{\"name\":\"ICC Workshops - 2008 IEEE International Conference on Communications Workshops\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICC Workshops - 2008 IEEE International Conference on Communications Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCW.2008.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICC Workshops - 2008 IEEE International Conference on Communications Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCW.2008.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cooperative Relaying with Pragmatic Space-Time Codes
The construction of space-time codes for wireless cooperative communications is investigated by considering a pragmatic approach based on the concatenation of convolutional codes and BPSK/QPSK modulation to obtain cooperative codes for relay networks. We also derive the pairwise error probability, an asymptotic bound for frame error probability and a design criterion to optimize both diversity and coding gain. This framework is useful to characterize the behavior of cooperative pragmatic space-time codes (CP-STC) and to set up a code search procedure to obtain good pragmatic space-time codes (P-STC) with overlay construction (COP-STC) which are suitable for cooperative communication with a variable number of relays in quasi static channel. We find that P-STCs perform quite well in block fading channels, including quasi-static channel, even with a low number of states and relays, despite the fact that the implementation of P-STC requires common convolutional encoders and Viterbi decoders with suitable generators and rates, thus having low complexity.