参数序列比较的界

David Fernández-Baca, T. Seppäläinen, G. Slutzki
{"title":"参数序列比较的界","authors":"David Fernández-Baca, T. Seppäläinen, G. Slutzki","doi":"10.1109/SPIRE.1999.796578","DOIUrl":null,"url":null,"abstract":"We consider the problem of computing a global alignment between two or more sequences subject to varying mismatch and indel penalties. We prove a tight 3(n/2/spl pi/)/sup 2/3/+O(n/sup 1/3/logn) bound on the worst-case number of distinct optimum alignments for two sequences of length n as the parameters are varied. This refines a O(n/sup 2/3/) upper bound by D. Gusfield et al. (1994). Our lower bound requires an unbounded alphabet. For strings over a binary alphabet, we prove a /spl Omega/(n/sup 1/2/) lower bound. For the parametric global alignment of k/spl ges/2 sequences under sum-of-pairs scoring, we prove a 3((k/2)n/2/spl pi/)/sup 2/3/+O(k/sup 2/3/n/sup 1/3/logn) upper bound on the number of distinct optimality regions and a /spl Omega/(n/sup 2/3/) lower bound. Based on experimental evidence, we conjecture that for two random sequences, the number of optimality regions is approximately /spl radic/n with high probability.","PeriodicalId":131279,"journal":{"name":"6th International Symposium on String Processing and Information Retrieval. 5th International Workshop on Groupware (Cat. No.PR00268)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Bounds for parametric sequence comparison\",\"authors\":\"David Fernández-Baca, T. Seppäläinen, G. Slutzki\",\"doi\":\"10.1109/SPIRE.1999.796578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of computing a global alignment between two or more sequences subject to varying mismatch and indel penalties. We prove a tight 3(n/2/spl pi/)/sup 2/3/+O(n/sup 1/3/logn) bound on the worst-case number of distinct optimum alignments for two sequences of length n as the parameters are varied. This refines a O(n/sup 2/3/) upper bound by D. Gusfield et al. (1994). Our lower bound requires an unbounded alphabet. For strings over a binary alphabet, we prove a /spl Omega/(n/sup 1/2/) lower bound. For the parametric global alignment of k/spl ges/2 sequences under sum-of-pairs scoring, we prove a 3((k/2)n/2/spl pi/)/sup 2/3/+O(k/sup 2/3/n/sup 1/3/logn) upper bound on the number of distinct optimality regions and a /spl Omega/(n/sup 2/3/) lower bound. Based on experimental evidence, we conjecture that for two random sequences, the number of optimality regions is approximately /spl radic/n with high probability.\",\"PeriodicalId\":131279,\"journal\":{\"name\":\"6th International Symposium on String Processing and Information Retrieval. 5th International Workshop on Groupware (Cat. No.PR00268)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"6th International Symposium on String Processing and Information Retrieval. 5th International Workshop on Groupware (Cat. No.PR00268)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPIRE.1999.796578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th International Symposium on String Processing and Information Retrieval. 5th International Workshop on Groupware (Cat. No.PR00268)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIRE.1999.796578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们考虑计算两个或多个序列之间的全局对齐问题,这些序列受到不同的不匹配和不匹配惩罚。对于两个长度为n的序列,当参数变化时,我们证明了一个紧的3(n/2/spl pi/)/sup 2/3/+O(n/sup 1/3/logn)的界,即不同最优排列的最坏情况数。这改进了D. Gusfield等人(1994)提出的O(n/sup 2/3/)上限。我们的下界要求一个无界的字母表。对于二进制字母表上的字符串,我们证明了一个/spl /(n/sup 1/2/)下界。对于k/spl ges/2序列在对和评分下的参数全局对齐,我们证明了不同最优区域数目的上界为3((k/2)n/2/spl pi/)/sup 2/3/+O(k/sup 2/3/n/sup 1/3/logn),下界为a/ spl Omega/(n/sup 2/3/)。基于实验证据,我们推测对于两个随机序列,最优区域的数目高概率地近似为/spl基/n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounds for parametric sequence comparison
We consider the problem of computing a global alignment between two or more sequences subject to varying mismatch and indel penalties. We prove a tight 3(n/2/spl pi/)/sup 2/3/+O(n/sup 1/3/logn) bound on the worst-case number of distinct optimum alignments for two sequences of length n as the parameters are varied. This refines a O(n/sup 2/3/) upper bound by D. Gusfield et al. (1994). Our lower bound requires an unbounded alphabet. For strings over a binary alphabet, we prove a /spl Omega/(n/sup 1/2/) lower bound. For the parametric global alignment of k/spl ges/2 sequences under sum-of-pairs scoring, we prove a 3((k/2)n/2/spl pi/)/sup 2/3/+O(k/sup 2/3/n/sup 1/3/logn) upper bound on the number of distinct optimality regions and a /spl Omega/(n/sup 2/3/) lower bound. Based on experimental evidence, we conjecture that for two random sequences, the number of optimality regions is approximately /spl radic/n with high probability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信