智能加热器短期环境温度预测

Danilo Carastan-Santos, A. Silva, A. Goldman, Angan Mitra, Yanik Ngoko, Clément Mommessin, D. Trystram
{"title":"智能加热器短期环境温度预测","authors":"Danilo Carastan-Santos, A. Silva, A. Goldman, Angan Mitra, Yanik Ngoko, Clément Mommessin, D. Trystram","doi":"10.1109/ISCC53001.2021.9631550","DOIUrl":null,"url":null,"abstract":"Maintaining Cloud data centers is a worrying challenge in terms of energy efficiency. This challenge leads to solutions such as deploying Edge nodes that operate inside buildings without massive cooling systems. Edge nodes can act as smart heaters by recycling their consumed energy to heat these buildings. We propose a novel technique to perform temperature forecasting for Edge Computing smart heater environments. Our approach uses time series algorithms to exploit historical air temperature data, smart heaters’ power consumption and temperature to create models to predict short-term ambient temperature over one hour horizon. We implemented our approach on top of Facebook's Prophet time series forecasting framework, and we used the real-time logs from Qarnot Computing as a use-case of a smart heater Edge platform. Our best trained model yields ambient temperature forecasts with less than 2.66% Mean Absolute Percentage Error.","PeriodicalId":270786,"journal":{"name":"2021 IEEE Symposium on Computers and Communications (ISCC)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-Term Ambient Temperature Forecasting for Smart Heaters\",\"authors\":\"Danilo Carastan-Santos, A. Silva, A. Goldman, Angan Mitra, Yanik Ngoko, Clément Mommessin, D. Trystram\",\"doi\":\"10.1109/ISCC53001.2021.9631550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maintaining Cloud data centers is a worrying challenge in terms of energy efficiency. This challenge leads to solutions such as deploying Edge nodes that operate inside buildings without massive cooling systems. Edge nodes can act as smart heaters by recycling their consumed energy to heat these buildings. We propose a novel technique to perform temperature forecasting for Edge Computing smart heater environments. Our approach uses time series algorithms to exploit historical air temperature data, smart heaters’ power consumption and temperature to create models to predict short-term ambient temperature over one hour horizon. We implemented our approach on top of Facebook's Prophet time series forecasting framework, and we used the real-time logs from Qarnot Computing as a use-case of a smart heater Edge platform. Our best trained model yields ambient temperature forecasts with less than 2.66% Mean Absolute Percentage Error.\",\"PeriodicalId\":270786,\"journal\":{\"name\":\"2021 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC53001.2021.9631550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC53001.2021.9631550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

维护云数据中心在能源效率方面是一个令人担忧的挑战。这一挑战带来了一些解决方案,比如部署在建筑物内部运行的Edge节点,而不需要大规模的冷却系统。边缘节点可以作为智能加热器,通过回收它们消耗的能量来加热这些建筑。我们提出了一种新的技术来执行边缘计算智能加热器环境的温度预测。我们的方法使用时间序列算法来利用历史气温数据、智能加热器的功耗和温度来创建模型,以预测一小时内的短期环境温度。我们在Facebook的Prophet时间序列预测框架上实现了我们的方法,我们使用了Qarnot Computing的实时日志作为智能加热器Edge平台的用例。我们最好的训练模型产生的环境温度预测的平均绝对百分比误差小于2.66%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-Term Ambient Temperature Forecasting for Smart Heaters
Maintaining Cloud data centers is a worrying challenge in terms of energy efficiency. This challenge leads to solutions such as deploying Edge nodes that operate inside buildings without massive cooling systems. Edge nodes can act as smart heaters by recycling their consumed energy to heat these buildings. We propose a novel technique to perform temperature forecasting for Edge Computing smart heater environments. Our approach uses time series algorithms to exploit historical air temperature data, smart heaters’ power consumption and temperature to create models to predict short-term ambient temperature over one hour horizon. We implemented our approach on top of Facebook's Prophet time series forecasting framework, and we used the real-time logs from Qarnot Computing as a use-case of a smart heater Edge platform. Our best trained model yields ambient temperature forecasts with less than 2.66% Mean Absolute Percentage Error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信