使用数百万范围数据的非参数占用图

Clément Deymier, Damien Vivet, T. Chateau
{"title":"使用数百万范围数据的非参数占用图","authors":"Clément Deymier, Damien Vivet, T. Chateau","doi":"10.1109/IVS.2013.6629554","DOIUrl":null,"url":null,"abstract":"This paper presents a fast method to estimate the probability of occupancy of a space point from a huge set of 3D rays represented in a common reference. These data can come from any range finding sensor such as : Lidar, Kinect or Velodyne. The key idea is to consider that the occupancy of a space 3D point is linked to 1) the number of 3D point belonging to a local volume around the point and 2) the number of rays crossing through the same volume. We propose a probabilistic non-parametric framework based on KNN estimator. The major contribution of the paper is an original solution to search rays in the neighborhood of a 3D point with a five dimensional binary tree that can handle several millions measurements. Experiments shows the relevance of the proposed method in terms of both accuracy and computation time. Moreover, the resulting method has been applied to three different 3D sensors: a Kinect, a 3D Lidar (Velodyne HDL-64E) and a mono-planar Lidar.","PeriodicalId":251198,"journal":{"name":"2013 IEEE Intelligent Vehicles Symposium (IV)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Non-parametric occupancy map using millions of range data\",\"authors\":\"Clément Deymier, Damien Vivet, T. Chateau\",\"doi\":\"10.1109/IVS.2013.6629554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a fast method to estimate the probability of occupancy of a space point from a huge set of 3D rays represented in a common reference. These data can come from any range finding sensor such as : Lidar, Kinect or Velodyne. The key idea is to consider that the occupancy of a space 3D point is linked to 1) the number of 3D point belonging to a local volume around the point and 2) the number of rays crossing through the same volume. We propose a probabilistic non-parametric framework based on KNN estimator. The major contribution of the paper is an original solution to search rays in the neighborhood of a 3D point with a five dimensional binary tree that can handle several millions measurements. Experiments shows the relevance of the proposed method in terms of both accuracy and computation time. Moreover, the resulting method has been applied to three different 3D sensors: a Kinect, a 3D Lidar (Velodyne HDL-64E) and a mono-planar Lidar.\",\"PeriodicalId\":251198,\"journal\":{\"name\":\"2013 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2013.6629554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2013.6629554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种快速估计空间点被占用概率的方法,该方法可以从一个共同参考点中表示的大量三维射线中估计空间点被占用的概率。这些数据可以来自任何测距传感器,如激光雷达、Kinect或Velodyne。关键思想是考虑空间3D点的占用与1)属于该点周围局部体积的3D点的数量和2)穿过同一体积的光线数量有关。提出了一种基于KNN估计量的概率非参数框架。本文的主要贡献是用一种可以处理数百万个测量值的五维二叉树在三维点附近搜索射线的原始解决方案。实验结果表明,该方法在精度和计算时间上都具有一定的相关性。此外,所得到的方法已应用于三种不同的3D传感器:Kinect, 3D激光雷达(Velodyne HDL-64E)和单平面激光雷达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-parametric occupancy map using millions of range data
This paper presents a fast method to estimate the probability of occupancy of a space point from a huge set of 3D rays represented in a common reference. These data can come from any range finding sensor such as : Lidar, Kinect or Velodyne. The key idea is to consider that the occupancy of a space 3D point is linked to 1) the number of 3D point belonging to a local volume around the point and 2) the number of rays crossing through the same volume. We propose a probabilistic non-parametric framework based on KNN estimator. The major contribution of the paper is an original solution to search rays in the neighborhood of a 3D point with a five dimensional binary tree that can handle several millions measurements. Experiments shows the relevance of the proposed method in terms of both accuracy and computation time. Moreover, the resulting method has been applied to three different 3D sensors: a Kinect, a 3D Lidar (Velodyne HDL-64E) and a mono-planar Lidar.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信