基于遗传算法的模糊规则分类器的权重优化和结构选择

Alexandre Evsukoff
{"title":"基于遗传算法的模糊规则分类器的权重优化和结构选择","authors":"Alexandre Evsukoff","doi":"10.1109/FUZZY.2007.4295471","DOIUrl":null,"url":null,"abstract":"This paper presents a method for designing fuzzy rule based systems for pattern recognition. The resulting model is interpretable as linguistic rules and can be used for deep understanding of data. The classifier performance is optimized in the least squares sense and the model complexity is minimized in a structure selection search, performed by a genetic algorithm The method is tested against benchmark classification problems found in the literature, with good results.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Learning Fuzzy Rule Based Classifier with Rule Weights Optimization and Structure Selection by a Genetic Algorithm\",\"authors\":\"Alexandre Evsukoff\",\"doi\":\"10.1109/FUZZY.2007.4295471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for designing fuzzy rule based systems for pattern recognition. The resulting model is interpretable as linguistic rules and can be used for deep understanding of data. The classifier performance is optimized in the least squares sense and the model complexity is minimized in a structure selection search, performed by a genetic algorithm The method is tested against benchmark classification problems found in the literature, with good results.\",\"PeriodicalId\":236515,\"journal\":{\"name\":\"2007 IEEE International Fuzzy Systems Conference\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Fuzzy Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2007.4295471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于模糊规则的模式识别系统设计方法。生成的模型可解释为语言规则,可用于深入理解数据。该方法在最小二乘意义上优化了分类器性能,并在遗传算法的结构选择搜索中最小化了模型复杂度。该方法与文献中发现的基准分类问题进行了测试,取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Fuzzy Rule Based Classifier with Rule Weights Optimization and Structure Selection by a Genetic Algorithm
This paper presents a method for designing fuzzy rule based systems for pattern recognition. The resulting model is interpretable as linguistic rules and can be used for deep understanding of data. The classifier performance is optimized in the least squares sense and the model complexity is minimized in a structure selection search, performed by a genetic algorithm The method is tested against benchmark classification problems found in the literature, with good results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信