一种结合特征和变形处理与分类模型的目标跟踪联合方法

Wei Tian, Jingyuan Lv
{"title":"一种结合特征和变形处理与分类模型的目标跟踪联合方法","authors":"Wei Tian, Jingyuan Lv","doi":"10.1109/ICINFA.2014.6932696","DOIUrl":null,"url":null,"abstract":"Object tracking is a widely researched topic with applications in event detection, surveillance and behavior analysis. There are three key steps in object tracking: feature extraction, deformation handling, and classification. In this paper, we present a joint method combining feature and deformation handling with classification model for object tracking. Multi-scale tracking map are obtained from multi-scale rectangle filters and sparse random measurement matrix. Then the map is put into a model combing feature and deformation handling. In the end, a BP net is used for classification. The cooperation is represented in the training process. Experiments on some publicly available benchmark video sequences demonstrate the advantages of the proposed algorithm over other approaches.","PeriodicalId":427762,"journal":{"name":"2014 IEEE International Conference on Information and Automation (ICIA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A joint method combining feature and deformation handling with classification model for object tracking\",\"authors\":\"Wei Tian, Jingyuan Lv\",\"doi\":\"10.1109/ICINFA.2014.6932696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object tracking is a widely researched topic with applications in event detection, surveillance and behavior analysis. There are three key steps in object tracking: feature extraction, deformation handling, and classification. In this paper, we present a joint method combining feature and deformation handling with classification model for object tracking. Multi-scale tracking map are obtained from multi-scale rectangle filters and sparse random measurement matrix. Then the map is put into a model combing feature and deformation handling. In the end, a BP net is used for classification. The cooperation is represented in the training process. Experiments on some publicly available benchmark video sequences demonstrate the advantages of the proposed algorithm over other approaches.\",\"PeriodicalId\":427762,\"journal\":{\"name\":\"2014 IEEE International Conference on Information and Automation (ICIA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Information and Automation (ICIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINFA.2014.6932696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Information and Automation (ICIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2014.6932696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目标跟踪是一个被广泛研究的课题,在事件检测、监视和行为分析等方面有着广泛的应用。目标跟踪有三个关键步骤:特征提取、变形处理和分类。本文提出了一种将特征和变形处理与分类模型相结合的目标跟踪方法。利用多尺度矩形滤波器和稀疏随机测量矩阵得到多尺度跟踪图。然后结合特征处理和变形处理,将该地图转化为模型。最后,利用BP网络进行分类。合作体现在培训过程中。在一些公开的基准视频序列上的实验表明,该算法优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A joint method combining feature and deformation handling with classification model for object tracking
Object tracking is a widely researched topic with applications in event detection, surveillance and behavior analysis. There are three key steps in object tracking: feature extraction, deformation handling, and classification. In this paper, we present a joint method combining feature and deformation handling with classification model for object tracking. Multi-scale tracking map are obtained from multi-scale rectangle filters and sparse random measurement matrix. Then the map is put into a model combing feature and deformation handling. In the end, a BP net is used for classification. The cooperation is represented in the training process. Experiments on some publicly available benchmark video sequences demonstrate the advantages of the proposed algorithm over other approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信