加快超大规模采矿

Ganesha Upadhyaya, Hridesh Rajan
{"title":"加快超大规模采矿","authors":"Ganesha Upadhyaya, Hridesh Rajan","doi":"10.1109/ICSE-NIER.2017.11","DOIUrl":null,"url":null,"abstract":"Ultra-large-scale mining has been shown to be useful for a number of software engineering tasks e.g. mining specifications, defect prediction. We propose a new research direction for accelerating ultra-large-scale mining that goes beyond parallelization. Our key idea is to analyze the interaction pattern between the mining task and the artifact to cluster artifacts such that running the mining task on one candidate artifact from each cluster is sufficient to produce results for other artifacts in the same cluster. Our artifact clustering criteria go beyond syntactic, semantic, and functional similarities to mining-task-specific similarity, where the interaction pattern between the mining task and the artifact is used for clustering. Our preliminary evaluation demonstrates that our technique significantly reduces the overall mining time.","PeriodicalId":134651,"journal":{"name":"2017 IEEE/ACM 39th International Conference on Software Engineering: New Ideas and Emerging Technologies Results Track (ICSE-NIER)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On Accelerating Ultra-Large-Scale Mining\",\"authors\":\"Ganesha Upadhyaya, Hridesh Rajan\",\"doi\":\"10.1109/ICSE-NIER.2017.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultra-large-scale mining has been shown to be useful for a number of software engineering tasks e.g. mining specifications, defect prediction. We propose a new research direction for accelerating ultra-large-scale mining that goes beyond parallelization. Our key idea is to analyze the interaction pattern between the mining task and the artifact to cluster artifacts such that running the mining task on one candidate artifact from each cluster is sufficient to produce results for other artifacts in the same cluster. Our artifact clustering criteria go beyond syntactic, semantic, and functional similarities to mining-task-specific similarity, where the interaction pattern between the mining task and the artifact is used for clustering. Our preliminary evaluation demonstrates that our technique significantly reduces the overall mining time.\",\"PeriodicalId\":134651,\"journal\":{\"name\":\"2017 IEEE/ACM 39th International Conference on Software Engineering: New Ideas and Emerging Technologies Results Track (ICSE-NIER)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM 39th International Conference on Software Engineering: New Ideas and Emerging Technologies Results Track (ICSE-NIER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE-NIER.2017.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM 39th International Conference on Software Engineering: New Ideas and Emerging Technologies Results Track (ICSE-NIER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE-NIER.2017.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

超大规模挖掘已被证明对许多软件工程任务很有用,例如挖掘规范、缺陷预测。我们提出了一个超越并行化的超大规模采矿加速研究的新方向。我们的关键思想是分析挖掘任务和工件之间的交互模式,以便在每个集群的一个候选工件上运行挖掘任务,就足以为同一集群中的其他工件产生结果。我们的工件聚类标准超越了语法、语义和功能相似性,而是挖掘任务特定的相似性,其中挖掘任务和工件之间的交互模式用于聚类。我们的初步评估表明,我们的技术显著缩短了总体采矿时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Accelerating Ultra-Large-Scale Mining
Ultra-large-scale mining has been shown to be useful for a number of software engineering tasks e.g. mining specifications, defect prediction. We propose a new research direction for accelerating ultra-large-scale mining that goes beyond parallelization. Our key idea is to analyze the interaction pattern between the mining task and the artifact to cluster artifacts such that running the mining task on one candidate artifact from each cluster is sufficient to produce results for other artifacts in the same cluster. Our artifact clustering criteria go beyond syntactic, semantic, and functional similarities to mining-task-specific similarity, where the interaction pattern between the mining task and the artifact is used for clustering. Our preliminary evaluation demonstrates that our technique significantly reduces the overall mining time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信