基于视觉的户外同步定位和地图构建,使用压缩扩展卡尔曼滤波器

Yoon Sukjune, Park Sung-Kee, Choi Hyun Do, Kim Soohyun, Kwak Yoon Keun
{"title":"基于视觉的户外同步定位和地图构建,使用压缩扩展卡尔曼滤波器","authors":"Yoon Sukjune, Park Sung-Kee, Choi Hyun Do, Kim Soohyun, Kwak Yoon Keun","doi":"10.23919/ECC.2007.7068471","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a vision-based simultaneous localization and map-building (SLAM) algorithm using compressed extended Kalman filter (CEKF). SLAM addresses the problem of locating a mobile robot in unknown environments. Extended Kalman filters (EKF) are widely used to solve this problem. However, this filter is very time consuming. To reduce the computational complexity, we apply a CEKF to stereo images while compensating for some of the limitation shown in previous implementations of CEKF. Moreover, we estimate the full DOF, its position and pose, of the mobile robots which is required when operating in the outdoor environment. Outdoor experiments have been conducted to test the effectiveness of the proposed SLAM algorithm.","PeriodicalId":407048,"journal":{"name":"2007 European Control Conference (ECC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Vision-based outdoor simultaneous localization and map building using compressed extended Kalman filter\",\"authors\":\"Yoon Sukjune, Park Sung-Kee, Choi Hyun Do, Kim Soohyun, Kwak Yoon Keun\",\"doi\":\"10.23919/ECC.2007.7068471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a vision-based simultaneous localization and map-building (SLAM) algorithm using compressed extended Kalman filter (CEKF). SLAM addresses the problem of locating a mobile robot in unknown environments. Extended Kalman filters (EKF) are widely used to solve this problem. However, this filter is very time consuming. To reduce the computational complexity, we apply a CEKF to stereo images while compensating for some of the limitation shown in previous implementations of CEKF. Moreover, we estimate the full DOF, its position and pose, of the mobile robots which is required when operating in the outdoor environment. Outdoor experiments have been conducted to test the effectiveness of the proposed SLAM algorithm.\",\"PeriodicalId\":407048,\"journal\":{\"name\":\"2007 European Control Conference (ECC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 European Control Conference (ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ECC.2007.7068471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.2007.7068471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于压缩扩展卡尔曼滤波(CEKF)的视觉同步定位与地图构建(SLAM)算法。SLAM解决了在未知环境中定位移动机器人的问题。扩展卡尔曼滤波(EKF)被广泛用于解决这一问题。然而,这个过滤器非常耗时。为了降低计算复杂度,我们将CEKF应用于立体图像,同时补偿以前CEKF实现中显示的一些限制。此外,我们估计了移动机器人在室外环境中操作时所需的全自由度,其位置和姿态。为了验证所提出的SLAM算法的有效性,我们进行了室外实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vision-based outdoor simultaneous localization and map building using compressed extended Kalman filter
In this paper, we propose a vision-based simultaneous localization and map-building (SLAM) algorithm using compressed extended Kalman filter (CEKF). SLAM addresses the problem of locating a mobile robot in unknown environments. Extended Kalman filters (EKF) are widely used to solve this problem. However, this filter is very time consuming. To reduce the computational complexity, we apply a CEKF to stereo images while compensating for some of the limitation shown in previous implementations of CEKF. Moreover, we estimate the full DOF, its position and pose, of the mobile robots which is required when operating in the outdoor environment. Outdoor experiments have been conducted to test the effectiveness of the proposed SLAM algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信