信息检索测试集的经济高效构建

D. Losada, Javier Parapar, Álvaro Barreiro
{"title":"信息检索测试集的经济高效构建","authors":"D. Losada, Javier Parapar, Álvaro Barreiro","doi":"10.1145/3230599.3230612","DOIUrl":null,"url":null,"abstract":"In this paper we describe our recent research on effective construction of Information Retrieval collections. Relevance assessments are a core component of test collections, but they are expensive to produce. For each test query, only a sample of documents in the corpus can be assessed for relevance. We discuss here a class of document adjudication methods that iteratively choose documents based on reinforcement learning. Given a pool of candidate documents supplied by multiple retrieval systems, the production of relevance assessments is modeled as a multi-armed bandit problem. These bandit-based algorithms identify relevant documents with minimal effort. One instance of these models has been adopted by NIST to build the test collection of the TREC 2017 common core track.","PeriodicalId":448209,"journal":{"name":"Proceedings of the 5th Spanish Conference on Information Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cost-effective construction of Information Retrieval test collections\",\"authors\":\"D. Losada, Javier Parapar, Álvaro Barreiro\",\"doi\":\"10.1145/3230599.3230612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe our recent research on effective construction of Information Retrieval collections. Relevance assessments are a core component of test collections, but they are expensive to produce. For each test query, only a sample of documents in the corpus can be assessed for relevance. We discuss here a class of document adjudication methods that iteratively choose documents based on reinforcement learning. Given a pool of candidate documents supplied by multiple retrieval systems, the production of relevance assessments is modeled as a multi-armed bandit problem. These bandit-based algorithms identify relevant documents with minimal effort. One instance of these models has been adopted by NIST to build the test collection of the TREC 2017 common core track.\",\"PeriodicalId\":448209,\"journal\":{\"name\":\"Proceedings of the 5th Spanish Conference on Information Retrieval\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th Spanish Conference on Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3230599.3230612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Spanish Conference on Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3230599.3230612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了近年来在有效构建信息检索集合方面的研究进展。相关性评估是测试集合的核心组件,但是产生它们的成本很高。对于每个测试查询,只能评估语料库中文档的一个样本的相关性。本文讨论了一类基于强化学习迭代选择文档的文档判定方法。给定由多个检索系统提供的候选文档池,相关性评估的产生被建模为一个多臂强盗问题。这些基于强盗的算法以最小的努力识别相关文档。这些模型的一个实例已被NIST用于构建TREC 2017公共核心轨道的测试集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cost-effective construction of Information Retrieval test collections
In this paper we describe our recent research on effective construction of Information Retrieval collections. Relevance assessments are a core component of test collections, but they are expensive to produce. For each test query, only a sample of documents in the corpus can be assessed for relevance. We discuss here a class of document adjudication methods that iteratively choose documents based on reinforcement learning. Given a pool of candidate documents supplied by multiple retrieval systems, the production of relevance assessments is modeled as a multi-armed bandit problem. These bandit-based algorithms identify relevant documents with minimal effort. One instance of these models has been adopted by NIST to build the test collection of the TREC 2017 common core track.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信