基于序列阈值和支持向量机网络的免疫组化胃炎染色细胞自动识别

T. Markiewicz, C. Jochymski, R. Koktysz, W. Kozlowski
{"title":"基于序列阈值和支持向量机网络的免疫组化胃炎染色细胞自动识别","authors":"T. Markiewicz, C. Jochymski, R. Koktysz, W. Kozlowski","doi":"10.1109/ISBI.2008.4541160","DOIUrl":null,"url":null,"abstract":"The paper presents program for automatic cell recognition and counting in selected immunohistochemical stains in the gastritis diseases. It is applied to cytoplasm reactivity markers, such as chromogranin A, serotonin and somatostatin antibodies. The program uses the sequential thresholding algorithm in combination with artificial neural network of support vector machine (SVM) type, to recognize the nuclei of the separated cells. The constructed algorithm imitates the human view of the image. The support vector machine is used for recognition of the immunoreactivity of the separated cell. The results corresponding to the exemplary images, confirm good accuracy, comparable to the human expert.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Automatic cell recognition in immunohistochemical gastritis stains using sequential thresholding and SVM network\",\"authors\":\"T. Markiewicz, C. Jochymski, R. Koktysz, W. Kozlowski\",\"doi\":\"10.1109/ISBI.2008.4541160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents program for automatic cell recognition and counting in selected immunohistochemical stains in the gastritis diseases. It is applied to cytoplasm reactivity markers, such as chromogranin A, serotonin and somatostatin antibodies. The program uses the sequential thresholding algorithm in combination with artificial neural network of support vector machine (SVM) type, to recognize the nuclei of the separated cells. The constructed algorithm imitates the human view of the image. The support vector machine is used for recognition of the immunoreactivity of the separated cell. The results corresponding to the exemplary images, confirm good accuracy, comparable to the human expert.\",\"PeriodicalId\":184204,\"journal\":{\"name\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2008.4541160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文介绍了胃炎疾病免疫组化染色细胞自动识别和计数程序。它适用于细胞质反应性标记物,如嗜铬粒蛋白A、血清素和生长抑素抗体。该程序采用序列阈值算法与支持向量机(SVM)型人工神经网络相结合,对分离细胞的细胞核进行识别。所构建的算法模拟了人类对图像的看法。支持向量机用于识别分离细胞的免疫反应性。结果与示例图像相对应,证实准确性好,可与人类专家相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic cell recognition in immunohistochemical gastritis stains using sequential thresholding and SVM network
The paper presents program for automatic cell recognition and counting in selected immunohistochemical stains in the gastritis diseases. It is applied to cytoplasm reactivity markers, such as chromogranin A, serotonin and somatostatin antibodies. The program uses the sequential thresholding algorithm in combination with artificial neural network of support vector machine (SVM) type, to recognize the nuclei of the separated cells. The constructed algorithm imitates the human view of the image. The support vector machine is used for recognition of the immunoreactivity of the separated cell. The results corresponding to the exemplary images, confirm good accuracy, comparable to the human expert.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信