通过重加权总变异和非局部稀疏回归的鲁棒MRI重建

Mingli Zhang, Christian Desrosiers
{"title":"通过重加权总变异和非局部稀疏回归的鲁棒MRI重建","authors":"Mingli Zhang, Christian Desrosiers","doi":"10.1109/MMSP.2016.7813392","DOIUrl":null,"url":null,"abstract":"Total variation (TV) based sparsity and non local self-similarity have been shown to be powerful tools for the reconstruction of magnetic resonance (MR) images. However, due to the uniform regularization of gradient sparsity, standard TV approaches often over-smooth edges in the image, resulting in the loss of important details. This paper presents a novel compressed sensing method for the reconstruction of MRI data, which uses a regularization strategy based on re-weighted TV to preserve image edges. This method also leverages the redundancy of non local image patches through the use of a sparse regression model. An efficient strategy based on the Alternating Direction Method of Multipliers (ADMM) algorithm is used to recover images with the proposed model. Experimental results on a simulated phantom and real brain MR data show our method to outperform state-of-the-art compressed sensing approaches, by better preserving edges and removing artifacts in the image.","PeriodicalId":113192,"journal":{"name":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Robust MRI reconstruction via re-weighted total variation and non-local sparse regression\",\"authors\":\"Mingli Zhang, Christian Desrosiers\",\"doi\":\"10.1109/MMSP.2016.7813392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Total variation (TV) based sparsity and non local self-similarity have been shown to be powerful tools for the reconstruction of magnetic resonance (MR) images. However, due to the uniform regularization of gradient sparsity, standard TV approaches often over-smooth edges in the image, resulting in the loss of important details. This paper presents a novel compressed sensing method for the reconstruction of MRI data, which uses a regularization strategy based on re-weighted TV to preserve image edges. This method also leverages the redundancy of non local image patches through the use of a sparse regression model. An efficient strategy based on the Alternating Direction Method of Multipliers (ADMM) algorithm is used to recover images with the proposed model. Experimental results on a simulated phantom and real brain MR data show our method to outperform state-of-the-art compressed sensing approaches, by better preserving edges and removing artifacts in the image.\",\"PeriodicalId\":113192,\"journal\":{\"name\":\"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2016.7813392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2016.7813392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于全变分(TV)的稀疏性和非局部自相似性已被证明是磁共振图像重建的有力工具。然而,由于梯度稀疏性的均匀正则化,标准电视方法往往在图像中过于光滑的边缘,导致重要细节的丢失。提出了一种新的MRI数据重构压缩感知方法,该方法采用基于重加权电视的正则化策略来保持图像边缘。该方法还通过使用稀疏回归模型来利用非局部图像补丁的冗余。采用基于交替方向乘法器(ADMM)算法的有效策略对该模型进行图像恢复。在模拟幻影和真实大脑MR数据上的实验结果表明,我们的方法通过更好地保留图像中的边缘和去除图像中的伪影,优于最先进的压缩感知方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust MRI reconstruction via re-weighted total variation and non-local sparse regression
Total variation (TV) based sparsity and non local self-similarity have been shown to be powerful tools for the reconstruction of magnetic resonance (MR) images. However, due to the uniform regularization of gradient sparsity, standard TV approaches often over-smooth edges in the image, resulting in the loss of important details. This paper presents a novel compressed sensing method for the reconstruction of MRI data, which uses a regularization strategy based on re-weighted TV to preserve image edges. This method also leverages the redundancy of non local image patches through the use of a sparse regression model. An efficient strategy based on the Alternating Direction Method of Multipliers (ADMM) algorithm is used to recover images with the proposed model. Experimental results on a simulated phantom and real brain MR data show our method to outperform state-of-the-art compressed sensing approaches, by better preserving edges and removing artifacts in the image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信