共面微带/静电纺丝传感器系统测量聚氧化物(PEO)静电纺丝的电子性能

C. Fuhrhop, A. Georgiadis
{"title":"共面微带/静电纺丝传感器系统测量聚氧化物(PEO)静电纺丝的电子性能","authors":"C. Fuhrhop, A. Georgiadis","doi":"10.1109/MeMeA.2015.7145257","DOIUrl":null,"url":null,"abstract":"In the literature we found different kind of film conducting polymers, as Polyaniline (PANI) or Polypyrrole (PPY), used as sensor element integrated in a Field Effect Transistor (FET) for the detection of gas or photogenes. In this work we proposed a sensor system prototype based on the combination of a coplanar micro strip (CPμS) waveguide and polymer nanofibers met (electrospun) called, CPμS/PNW sensor system, for target element (bio element or gas) detection. The detection idea is based on the impedance change measurement in the frequency range. The first step toward to develop the sensor is to investigate and understand the low frequency (0.1 to 1 MHz) electrodynamics response properties of the CPμS waveguide with (CPμS/PNW) and without nanofibers. We develop a transmission line mathematical model to describe the CPμS/PNW sensor system, the mathematical model was simulated with Scilab and the results were compared with the CPμS/PNW experimental data to see the degree of agreement between model and experiment. The impedance curves obtained from the experimental data show a good agreement with the model, which predict CPμS/PNW (CPμS + electrospun) impedance curve lower than the CPμS impedance curve. The electronics property (impedance) of the PEO electrospun was calculated from the difference between both impedance curves, this difference represent the polymer nanofibers mat impedance. The curves exhibited approximately a sub-linear power law decrease with frequency, which is consistent with the behavior found in polymers. The polymer nanofibers mat was produced by electrospinning method, where the diameter of the nanofibers obtained are in the range of 100 nm and 900 nm.","PeriodicalId":277757,"journal":{"name":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coplanar micro-strips/electrospun sensor system to measure the electronics properties of the polyethylene oxide (PEO) electrospun\",\"authors\":\"C. Fuhrhop, A. Georgiadis\",\"doi\":\"10.1109/MeMeA.2015.7145257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the literature we found different kind of film conducting polymers, as Polyaniline (PANI) or Polypyrrole (PPY), used as sensor element integrated in a Field Effect Transistor (FET) for the detection of gas or photogenes. In this work we proposed a sensor system prototype based on the combination of a coplanar micro strip (CPμS) waveguide and polymer nanofibers met (electrospun) called, CPμS/PNW sensor system, for target element (bio element or gas) detection. The detection idea is based on the impedance change measurement in the frequency range. The first step toward to develop the sensor is to investigate and understand the low frequency (0.1 to 1 MHz) electrodynamics response properties of the CPμS waveguide with (CPμS/PNW) and without nanofibers. We develop a transmission line mathematical model to describe the CPμS/PNW sensor system, the mathematical model was simulated with Scilab and the results were compared with the CPμS/PNW experimental data to see the degree of agreement between model and experiment. The impedance curves obtained from the experimental data show a good agreement with the model, which predict CPμS/PNW (CPμS + electrospun) impedance curve lower than the CPμS impedance curve. The electronics property (impedance) of the PEO electrospun was calculated from the difference between both impedance curves, this difference represent the polymer nanofibers mat impedance. The curves exhibited approximately a sub-linear power law decrease with frequency, which is consistent with the behavior found in polymers. The polymer nanofibers mat was produced by electrospinning method, where the diameter of the nanofibers obtained are in the range of 100 nm and 900 nm.\",\"PeriodicalId\":277757,\"journal\":{\"name\":\"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA.2015.7145257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA.2015.7145257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在文献中,我们发现了不同类型的薄膜导电聚合物,如聚苯胺(PANI)或聚吡咯(PPY),用作集成在场效应晶体管(FET)中的传感器元件,用于检测气体或光气。本文提出了一种基于共面微带(CPμS)波导和聚合物纳米纤维(静电纺)相结合的传感器系统原型,称为CPμS/PNW传感器系统,用于检测目标元素(生物元素或气体)。其检测思路是基于频率范围内的阻抗变化测量。开发传感器的第一步是研究和了解(CPμS/PNW)和不含纳米纤维的CPμS波导的低频(0.1 ~ 1 MHz)电动力学响应特性。建立了描述CPμS/PNW传感器系统的传输线数学模型,利用Scilab对该数学模型进行了仿真,并将仿真结果与CPμS/PNW实验数据进行了比较,验证了模型与实验的吻合程度。实验数据得到的阻抗曲线与模型吻合较好,预测的CPμS/PNW (CPμS +静电纺)阻抗曲线低于CPμS阻抗曲线。根据阻抗曲线的差值计算了PEO静电纺丝的电子性能(阻抗),该差值代表了聚合物纳米纤维垫的阻抗。曲线随频率近似呈次线性幂律下降,这与聚合物中的行为一致。采用静电纺丝法制备了聚合物纳米纤维垫,得到的纳米纤维直径在100 ~ 900 nm之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coplanar micro-strips/electrospun sensor system to measure the electronics properties of the polyethylene oxide (PEO) electrospun
In the literature we found different kind of film conducting polymers, as Polyaniline (PANI) or Polypyrrole (PPY), used as sensor element integrated in a Field Effect Transistor (FET) for the detection of gas or photogenes. In this work we proposed a sensor system prototype based on the combination of a coplanar micro strip (CPμS) waveguide and polymer nanofibers met (electrospun) called, CPμS/PNW sensor system, for target element (bio element or gas) detection. The detection idea is based on the impedance change measurement in the frequency range. The first step toward to develop the sensor is to investigate and understand the low frequency (0.1 to 1 MHz) electrodynamics response properties of the CPμS waveguide with (CPμS/PNW) and without nanofibers. We develop a transmission line mathematical model to describe the CPμS/PNW sensor system, the mathematical model was simulated with Scilab and the results were compared with the CPμS/PNW experimental data to see the degree of agreement between model and experiment. The impedance curves obtained from the experimental data show a good agreement with the model, which predict CPμS/PNW (CPμS + electrospun) impedance curve lower than the CPμS impedance curve. The electronics property (impedance) of the PEO electrospun was calculated from the difference between both impedance curves, this difference represent the polymer nanofibers mat impedance. The curves exhibited approximately a sub-linear power law decrease with frequency, which is consistent with the behavior found in polymers. The polymer nanofibers mat was produced by electrospinning method, where the diameter of the nanofibers obtained are in the range of 100 nm and 900 nm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信