循环经济中肉类废弃物的酶解研究

M. Angulo, M. C. Márquez
{"title":"循环经济中肉类废弃物的酶解研究","authors":"M. Angulo, M. C. Márquez","doi":"10.21926/cr.2301008","DOIUrl":null,"url":null,"abstract":"This work demonstrates the possibility of implementing a technology that allows profitable value to be drawn from the meat waste from retail stores. Protein hydrolysate, collagen and fatty acids were recovered from meat waste through enzymatic hydrolysis using a mixture of enzymes: a protease (Alcalase) and a lipase (Resinase). Enzymatic hydrolysis was studied by response surface methodology (RMS). Four independent variables were used to study the response variables. The analysis showed that all factors including protease/proteinic substrate ratio, lipase/lipidic substrate ratio, pH and temperature had a significant effect on responses of recovery of a protein hydrolysate, collagen, and fatty acids. From RSM-generated models, different optimum conditions were obtained depending on the product to be recovered. The economic study showed that operating profit depends on the operating conditions but that, in suitable conditions, it is four or more times higher than that obtained in the transformation of meat waste into meal for animal feed (the current destination of the meat waste that does not go to landfill). Consequently, the enzymatic treatment proposed for meat waste in this work is highly recommendable to maintain a circular economy for this biodegradable waste.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"127 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enzymatic Hydrolysis of Meat Waste for a Circular Economy\",\"authors\":\"M. Angulo, M. C. Márquez\",\"doi\":\"10.21926/cr.2301008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work demonstrates the possibility of implementing a technology that allows profitable value to be drawn from the meat waste from retail stores. Protein hydrolysate, collagen and fatty acids were recovered from meat waste through enzymatic hydrolysis using a mixture of enzymes: a protease (Alcalase) and a lipase (Resinase). Enzymatic hydrolysis was studied by response surface methodology (RMS). Four independent variables were used to study the response variables. The analysis showed that all factors including protease/proteinic substrate ratio, lipase/lipidic substrate ratio, pH and temperature had a significant effect on responses of recovery of a protein hydrolysate, collagen, and fatty acids. From RSM-generated models, different optimum conditions were obtained depending on the product to be recovered. The economic study showed that operating profit depends on the operating conditions but that, in suitable conditions, it is four or more times higher than that obtained in the transformation of meat waste into meal for animal feed (the current destination of the meat waste that does not go to landfill). Consequently, the enzymatic treatment proposed for meat waste in this work is highly recommendable to maintain a circular economy for this biodegradable waste.\",\"PeriodicalId\":178524,\"journal\":{\"name\":\"Catalysis Research\",\"volume\":\"127 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/cr.2301008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/cr.2301008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作证明了实施一项技术的可能性,该技术允许从零售商店的肉类废物中提取有利可图的价值。利用一种蛋白酶(Alcalase)和一种脂肪酶(Resinase)的混合物,通过酶水解从肉废物中回收蛋白质水解物、胶原蛋白和脂肪酸。采用响应面法(RMS)对酶解进行了研究。采用4个自变量对反应变量进行研究。分析表明,蛋白酶/蛋白底物比、脂肪酶/脂质底物比、pH和温度等因素对蛋白水解产物、胶原蛋白和脂肪酸的回收率均有显著影响。从rsm生成的模型中,根据需要回收的产品得到不同的最佳条件。经济研究表明,经营利润取决于经营条件,但在适当的条件下,它比将肉类废物转化为动物饲料的饲料(目前不被填埋的肉类废物的目的地)所获得的利润高出四倍或更多。因此,在这项工作中提出的肉类废物的酶处理是非常值得推荐的,以保持这种可生物降解废物的循环经济。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enzymatic Hydrolysis of Meat Waste for a Circular Economy
This work demonstrates the possibility of implementing a technology that allows profitable value to be drawn from the meat waste from retail stores. Protein hydrolysate, collagen and fatty acids were recovered from meat waste through enzymatic hydrolysis using a mixture of enzymes: a protease (Alcalase) and a lipase (Resinase). Enzymatic hydrolysis was studied by response surface methodology (RMS). Four independent variables were used to study the response variables. The analysis showed that all factors including protease/proteinic substrate ratio, lipase/lipidic substrate ratio, pH and temperature had a significant effect on responses of recovery of a protein hydrolysate, collagen, and fatty acids. From RSM-generated models, different optimum conditions were obtained depending on the product to be recovered. The economic study showed that operating profit depends on the operating conditions but that, in suitable conditions, it is four or more times higher than that obtained in the transformation of meat waste into meal for animal feed (the current destination of the meat waste that does not go to landfill). Consequently, the enzymatic treatment proposed for meat waste in this work is highly recommendable to maintain a circular economy for this biodegradable waste.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信