利用ParsBERT和预训练mT5进行波斯语抽象文本摘要

Mehrdad Farahani, Mohammad Gharachorloo, M. Manthouri
{"title":"利用ParsBERT和预训练mT5进行波斯语抽象文本摘要","authors":"Mehrdad Farahani, Mohammad Gharachorloo, M. Manthouri","doi":"10.1109/CSICC52343.2021.9420563","DOIUrl":null,"url":null,"abstract":"Text summarization is one of the most critical Natural Language Processing (NLP) tasks. More and more researches are conducted in this field every day. Pre-trained transformer-based encoder-decoder models have begun to gain popularity for these tasks. This paper proposes two methods to address this task and introduces a novel dataset named pn-summary for Persian abstractive text summarization. The models employed in this paper are mT5 and an encoder-decoder version of the ParsBERT model (i.e., a monolingual BERT model for Persian). These models are fine-tuned on the pn-summary dataset. The current work is the first of its kind and, by achieving promising results, can serve as a baseline for any future work.","PeriodicalId":374593,"journal":{"name":"2021 26th International Computer Conference, Computer Society of Iran (CSICC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Leveraging ParsBERT and Pretrained mT5 for Persian Abstractive Text Summarization\",\"authors\":\"Mehrdad Farahani, Mohammad Gharachorloo, M. Manthouri\",\"doi\":\"10.1109/CSICC52343.2021.9420563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text summarization is one of the most critical Natural Language Processing (NLP) tasks. More and more researches are conducted in this field every day. Pre-trained transformer-based encoder-decoder models have begun to gain popularity for these tasks. This paper proposes two methods to address this task and introduces a novel dataset named pn-summary for Persian abstractive text summarization. The models employed in this paper are mT5 and an encoder-decoder version of the ParsBERT model (i.e., a monolingual BERT model for Persian). These models are fine-tuned on the pn-summary dataset. The current work is the first of its kind and, by achieving promising results, can serve as a baseline for any future work.\",\"PeriodicalId\":374593,\"journal\":{\"name\":\"2021 26th International Computer Conference, Computer Society of Iran (CSICC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 26th International Computer Conference, Computer Society of Iran (CSICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICC52343.2021.9420563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th International Computer Conference, Computer Society of Iran (CSICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICC52343.2021.9420563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

文本摘要是自然语言处理(NLP)中最关键的任务之一。每天都有越来越多的研究在这一领域进行。基于预训练变压器的编码器-解码器模型已经开始在这些任务中流行起来。本文提出了两种方法来解决这一问题,并引入了一个名为pn-summary的新的波斯语抽象文本摘要数据集。本文中使用的模型是mT5和ParsBERT模型的编码器-解码器版本(即波斯语的单语BERT模型)。这些模型在pn-summary数据集上进行了微调。目前的工作是此类工作的第一次,通过取得有希望的结果,可以作为今后任何工作的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging ParsBERT and Pretrained mT5 for Persian Abstractive Text Summarization
Text summarization is one of the most critical Natural Language Processing (NLP) tasks. More and more researches are conducted in this field every day. Pre-trained transformer-based encoder-decoder models have begun to gain popularity for these tasks. This paper proposes two methods to address this task and introduces a novel dataset named pn-summary for Persian abstractive text summarization. The models employed in this paper are mT5 and an encoder-decoder version of the ParsBERT model (i.e., a monolingual BERT model for Persian). These models are fine-tuned on the pn-summary dataset. The current work is the first of its kind and, by achieving promising results, can serve as a baseline for any future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信