{"title":"基于聚类方法的非均匀采样数据非线性系统模糊辨识","authors":"Hongwei Wang, Xia Hao, Jie Lian","doi":"10.23919/CHICC.2018.8483051","DOIUrl":null,"url":null,"abstract":"This paper is motivated by the practical control considerations that non-uniformly sampled nonlinear systems are abundant in industrial process. The corresponding input-output relationship of non-uniformly sampled nonlinear systems is obtained by using the weighted combination of the multiple local lifted linear models acquired from non-uniformly sampled measurements. Further, fuzzy model is derived by constructing the fuzzy membership degree functions as the weighted combination representation. On this basis, we propose a fuzzy identification algorithm using GK fuzzy clustering and recursive least squared method. Finally, the simulation example is studied to demonstrate the effectiveness of the proposed method..","PeriodicalId":158442,"journal":{"name":"2018 37th Chinese Control Conference (CCC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy Identification of Non-uniformly Sampled Data Nonlinear Systems Based on Clustering Method\",\"authors\":\"Hongwei Wang, Xia Hao, Jie Lian\",\"doi\":\"10.23919/CHICC.2018.8483051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is motivated by the practical control considerations that non-uniformly sampled nonlinear systems are abundant in industrial process. The corresponding input-output relationship of non-uniformly sampled nonlinear systems is obtained by using the weighted combination of the multiple local lifted linear models acquired from non-uniformly sampled measurements. Further, fuzzy model is derived by constructing the fuzzy membership degree functions as the weighted combination representation. On this basis, we propose a fuzzy identification algorithm using GK fuzzy clustering and recursive least squared method. Finally, the simulation example is studied to demonstrate the effectiveness of the proposed method..\",\"PeriodicalId\":158442,\"journal\":{\"name\":\"2018 37th Chinese Control Conference (CCC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 37th Chinese Control Conference (CCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CHICC.2018.8483051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 37th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CHICC.2018.8483051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fuzzy Identification of Non-uniformly Sampled Data Nonlinear Systems Based on Clustering Method
This paper is motivated by the practical control considerations that non-uniformly sampled nonlinear systems are abundant in industrial process. The corresponding input-output relationship of non-uniformly sampled nonlinear systems is obtained by using the weighted combination of the multiple local lifted linear models acquired from non-uniformly sampled measurements. Further, fuzzy model is derived by constructing the fuzzy membership degree functions as the weighted combination representation. On this basis, we propose a fuzzy identification algorithm using GK fuzzy clustering and recursive least squared method. Finally, the simulation example is studied to demonstrate the effectiveness of the proposed method..