集成作为分段线性分类器

P. Hartono, S. Hashimoto
{"title":"集成作为分段线性分类器","authors":"P. Hartono, S. Hashimoto","doi":"10.1109/HIS.2006.24","DOIUrl":null,"url":null,"abstract":"In this paper we analyze the performance of a neural network ensemble in performing piecewise linear classification by automatically decomposing a non-linear problem into several linear sub-problems. The strength and weakness of this neural network ensemble with respect to MLP and Perceptron, and the diversity in the ensemble¿s modules, created as the result of the competitive learning process, are the main focus of this paper.","PeriodicalId":150732,"journal":{"name":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ensemble as a Piecewise Linear Classifier\",\"authors\":\"P. Hartono, S. Hashimoto\",\"doi\":\"10.1109/HIS.2006.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we analyze the performance of a neural network ensemble in performing piecewise linear classification by automatically decomposing a non-linear problem into several linear sub-problems. The strength and weakness of this neural network ensemble with respect to MLP and Perceptron, and the diversity in the ensemble¿s modules, created as the result of the competitive learning process, are the main focus of this paper.\",\"PeriodicalId\":150732,\"journal\":{\"name\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2006.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2006.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文通过将非线性问题自动分解为若干线性子问题,分析了神经网络集成在分段线性分类中的性能。该神经网络集成相对于MLP和感知器的优缺点,以及集成模块的多样性,是竞争学习过程的结果,是本文的主要焦点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ensemble as a Piecewise Linear Classifier
In this paper we analyze the performance of a neural network ensemble in performing piecewise linear classification by automatically decomposing a non-linear problem into several linear sub-problems. The strength and weakness of this neural network ensemble with respect to MLP and Perceptron, and the diversity in the ensemble¿s modules, created as the result of the competitive learning process, are the main focus of this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信