基于改进粒子群算法优化的灰色神经网络话务量预测

Xiuting Yu, Xizhong Qin, Zhenhong Jia, Chuanling Cao, Chun Chang
{"title":"基于改进粒子群算法优化的灰色神经网络话务量预测","authors":"Xiuting Yu, Xizhong Qin, Zhenhong Jia, Chuanling Cao, Chun Chang","doi":"10.14257/ijhit.2015.8.1.01","DOIUrl":null,"url":null,"abstract":"To solve the problem that the parameters in grey neural network (GNN) are difficult to determine, the improved Particle Swarm Optimization (IPSO) algorithm is employed to search the optimums by the introduction of a threshold of velocity. When the particle velocity is less than the threshold, an accelerated momentum is applied on the particle to reinitialize the particle velocity and position. The proposed approach is used to predict the telephone traffic of two regions. The forecasting results are compared with those of GNN, Grey Neural Network optimized by Particle Swarm Optimization (PSO-GNN) and Back-Propagation Neural Network (BPNN). The experimental results show high prediction accuracy.","PeriodicalId":365328,"journal":{"name":"Computer Engineering and Design","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Telephone Traffic Forecasting Based on Grey Neural Network Optimized by Improved Particle Swarm Optimization Algorithm\",\"authors\":\"Xiuting Yu, Xizhong Qin, Zhenhong Jia, Chuanling Cao, Chun Chang\",\"doi\":\"10.14257/ijhit.2015.8.1.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the problem that the parameters in grey neural network (GNN) are difficult to determine, the improved Particle Swarm Optimization (IPSO) algorithm is employed to search the optimums by the introduction of a threshold of velocity. When the particle velocity is less than the threshold, an accelerated momentum is applied on the particle to reinitialize the particle velocity and position. The proposed approach is used to predict the telephone traffic of two regions. The forecasting results are compared with those of GNN, Grey Neural Network optimized by Particle Swarm Optimization (PSO-GNN) and Back-Propagation Neural Network (BPNN). The experimental results show high prediction accuracy.\",\"PeriodicalId\":365328,\"journal\":{\"name\":\"Computer Engineering and Design\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Engineering and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14257/ijhit.2015.8.1.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Engineering and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/ijhit.2015.8.1.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对灰色神经网络(GNN)中参数难以确定的问题,采用改进的粒子群优化算法(IPSO),通过引入速度阈值来搜索最优参数。当粒子速度小于阈值时,对粒子施加加速动量以重新初始化粒子的速度和位置。利用该方法对两个地区的话务量进行了预测。将预测结果与GNN、粒子群优化灰色神经网络(PSO-GNN)和反向传播神经网络(BPNN)的预测结果进行了比较。实验结果表明,该方法具有较高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Telephone Traffic Forecasting Based on Grey Neural Network Optimized by Improved Particle Swarm Optimization Algorithm
To solve the problem that the parameters in grey neural network (GNN) are difficult to determine, the improved Particle Swarm Optimization (IPSO) algorithm is employed to search the optimums by the introduction of a threshold of velocity. When the particle velocity is less than the threshold, an accelerated momentum is applied on the particle to reinitialize the particle velocity and position. The proposed approach is used to predict the telephone traffic of two regions. The forecasting results are compared with those of GNN, Grey Neural Network optimized by Particle Swarm Optimization (PSO-GNN) and Back-Propagation Neural Network (BPNN). The experimental results show high prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信