孟加拉语在线手写体笔画分割与识别

Nilanjana Bhattacharya, U. Pal
{"title":"孟加拉语在线手写体笔画分割与识别","authors":"Nilanjana Bhattacharya, U. Pal","doi":"10.1109/ICFHR.2012.275","DOIUrl":null,"url":null,"abstract":"This paper deals with recognition of online handwritten Bangla (Bengali) text. Here, at first, we segment cursive words into strokes. A stroke may represent a character or a part of a character. We selected a set of Bangla words written by different groups of people such that they contain all basic characters, all vowel and consonant modifiers and almost all types of possible joining among them. For segmentation of text into strokes, we discovered some rules analyzing different joining patterns of Bangla characters. Combination of online and offline information was used for segmentation. We achieved correct segmentation rate of 97.89% on the dataset. We manually analyzed different strokes to create a ground truth set of distinct stroke classes for result verification and we obtained 85 stroke classes. Directional features were used in SVM for recognition and we achieved correct stroke recognition rate of 97.68%.","PeriodicalId":291062,"journal":{"name":"2012 International Conference on Frontiers in Handwriting Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Stroke Segmentation and Recognition from Bangla Online Handwritten Text\",\"authors\":\"Nilanjana Bhattacharya, U. Pal\",\"doi\":\"10.1109/ICFHR.2012.275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with recognition of online handwritten Bangla (Bengali) text. Here, at first, we segment cursive words into strokes. A stroke may represent a character or a part of a character. We selected a set of Bangla words written by different groups of people such that they contain all basic characters, all vowel and consonant modifiers and almost all types of possible joining among them. For segmentation of text into strokes, we discovered some rules analyzing different joining patterns of Bangla characters. Combination of online and offline information was used for segmentation. We achieved correct segmentation rate of 97.89% on the dataset. We manually analyzed different strokes to create a ground truth set of distinct stroke classes for result verification and we obtained 85 stroke classes. Directional features were used in SVM for recognition and we achieved correct stroke recognition rate of 97.68%.\",\"PeriodicalId\":291062,\"journal\":{\"name\":\"2012 International Conference on Frontiers in Handwriting Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFHR.2012.275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2012.275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

本文研究了在线手写体孟加拉文本的识别问题。在这里,首先,我们将草书词分成笔画。一个笔画可以代表一个字符或字符的一部分。我们选择了一组由不同群体的人写的孟加拉语单词,这些单词包含了所有的基本字符,所有的元音和辅音修饰语以及它们之间几乎所有可能的连接类型。对于文字笔画的分割,我们通过分析不同的孟加拉文字连接方式,发现了一些规律。采用线上和线下信息相结合的方法进行分割。我们在数据集上实现了97.89%的正确分割率。我们手动分析了不同的笔画,以创建不同笔画类的基本真实集,用于结果验证,我们获得了85个笔画类。在支持向量机中使用方向特征进行识别,正确笔画识别率达到97.68%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stroke Segmentation and Recognition from Bangla Online Handwritten Text
This paper deals with recognition of online handwritten Bangla (Bengali) text. Here, at first, we segment cursive words into strokes. A stroke may represent a character or a part of a character. We selected a set of Bangla words written by different groups of people such that they contain all basic characters, all vowel and consonant modifiers and almost all types of possible joining among them. For segmentation of text into strokes, we discovered some rules analyzing different joining patterns of Bangla characters. Combination of online and offline information was used for segmentation. We achieved correct segmentation rate of 97.89% on the dataset. We manually analyzed different strokes to create a ground truth set of distinct stroke classes for result verification and we obtained 85 stroke classes. Directional features were used in SVM for recognition and we achieved correct stroke recognition rate of 97.68%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信