组织病理学图像的双阶段域自适应有丝分裂检测

Veena Dodballapur, Yang Song, Heng Huang, Mei Chen, Wojciech Chrzanowski, Weidong (Tom) Cai
{"title":"组织病理学图像的双阶段域自适应有丝分裂检测","authors":"Veena Dodballapur, Yang Song, Heng Huang, Mei Chen, Wojciech Chrzanowski, Weidong (Tom) Cai","doi":"10.1109/DICTA51227.2020.9363411","DOIUrl":null,"url":null,"abstract":"Histopathology images for mitosis detection vary in appearance due to the non-standard method of preparing the tissues as well as differences in scanner hardware. This makes automatic machine learning based mitosis detection very challenging because of domain shift between the training and testing datasets. In this paper, we propose a method of addressing this domain shift problem by using a two-stage domain adaptive neural network. In the first stage, we use domain adaptive Mask R-CNN to generate masks for mitotic regions. Thus generated masks are used by a second domain adaptive convolutional neural network to perform finer mitosis detection. Our method achieved state-of-the-art performance on both ICPR 2012 and 2014 datasets. We demonstrate that using a domain agnostic approach achieves better generalization and mitosis cell localization for the trained models.","PeriodicalId":348164,"journal":{"name":"2020 Digital Image Computing: Techniques and Applications (DICTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dual-Stage Domain Adaptive Mitosis Detection for Histopathology Images\",\"authors\":\"Veena Dodballapur, Yang Song, Heng Huang, Mei Chen, Wojciech Chrzanowski, Weidong (Tom) Cai\",\"doi\":\"10.1109/DICTA51227.2020.9363411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Histopathology images for mitosis detection vary in appearance due to the non-standard method of preparing the tissues as well as differences in scanner hardware. This makes automatic machine learning based mitosis detection very challenging because of domain shift between the training and testing datasets. In this paper, we propose a method of addressing this domain shift problem by using a two-stage domain adaptive neural network. In the first stage, we use domain adaptive Mask R-CNN to generate masks for mitotic regions. Thus generated masks are used by a second domain adaptive convolutional neural network to perform finer mitosis detection. Our method achieved state-of-the-art performance on both ICPR 2012 and 2014 datasets. We demonstrate that using a domain agnostic approach achieves better generalization and mitosis cell localization for the trained models.\",\"PeriodicalId\":348164,\"journal\":{\"name\":\"2020 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA51227.2020.9363411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA51227.2020.9363411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

有丝分裂检测的组织病理学图像由于制备组织的非标准方法以及扫描仪硬件的差异而在外观上有所不同。这使得基于机器学习的自动有丝分裂检测非常具有挑战性,因为训练和测试数据集之间存在域转移。在本文中,我们提出了一种利用两阶段域自适应神经网络来解决这一问题的方法。在第一阶段,我们使用域自适应掩码R-CNN来生成有丝分裂区域的掩码。由此产生的掩模被第二域自适应卷积神经网络用于执行更精细的有丝分裂检测。我们的方法在ICPR 2012和2014数据集上都取得了最先进的性能。我们证明,使用领域不可知的方法可以获得更好的泛化和有丝分裂细胞定位训练模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-Stage Domain Adaptive Mitosis Detection for Histopathology Images
Histopathology images for mitosis detection vary in appearance due to the non-standard method of preparing the tissues as well as differences in scanner hardware. This makes automatic machine learning based mitosis detection very challenging because of domain shift between the training and testing datasets. In this paper, we propose a method of addressing this domain shift problem by using a two-stage domain adaptive neural network. In the first stage, we use domain adaptive Mask R-CNN to generate masks for mitotic regions. Thus generated masks are used by a second domain adaptive convolutional neural network to perform finer mitosis detection. Our method achieved state-of-the-art performance on both ICPR 2012 and 2014 datasets. We demonstrate that using a domain agnostic approach achieves better generalization and mitosis cell localization for the trained models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信