有限阿贝尔群的k次图中一个顶点的度

A. Sehgal, S. Singh
{"title":"有限阿贝尔群的k次图中一个顶点的度","authors":"A. Sehgal, S. Singh","doi":"10.1063/5.0154183","DOIUrl":null,"url":null,"abstract":"The power graph of a given finite group is a simple undirected graph whose vertex set is the group itself, and there is an edge between any two distinct vertices if one is a power of the other. In this paper, we find a precise formula to count the degree of a vertex in the power graph of a finite abelian group of prime-power order. By using the degree formula, we give a new proof to show that the power graph of a cyclic group of prime-power order is complete. We finally determine the degree of a vertex in the power graph of a finite abelian group.","PeriodicalId":191202,"journal":{"name":"RECENT ADVANCES IN SCIENCES, ENGINEERING, INFORMATION TECHNOLOGY & MANAGEMENT","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The degree of a vertex in the kth-power graph of a finite abelian group\",\"authors\":\"A. Sehgal, S. Singh\",\"doi\":\"10.1063/5.0154183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The power graph of a given finite group is a simple undirected graph whose vertex set is the group itself, and there is an edge between any two distinct vertices if one is a power of the other. In this paper, we find a precise formula to count the degree of a vertex in the power graph of a finite abelian group of prime-power order. By using the degree formula, we give a new proof to show that the power graph of a cyclic group of prime-power order is complete. We finally determine the degree of a vertex in the power graph of a finite abelian group.\",\"PeriodicalId\":191202,\"journal\":{\"name\":\"RECENT ADVANCES IN SCIENCES, ENGINEERING, INFORMATION TECHNOLOGY & MANAGEMENT\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RECENT ADVANCES IN SCIENCES, ENGINEERING, INFORMATION TECHNOLOGY & MANAGEMENT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0154183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RECENT ADVANCES IN SCIENCES, ENGINEERING, INFORMATION TECHNOLOGY & MANAGEMENT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0154183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

给定有限群的幂图是一个简单的无向图,其顶点集是群本身,如果一个顶点是另一个顶点的幂,则任意两个不同顶点之间存在一条边。本文给出了一个精确的计算素数幂次有限阿贝尔群幂图中顶点次数的公式。利用次数公式,给出了一个新的证明,证明了一个素幂次循环群的幂图是完备的。最后确定了有限阿贝尔群幂图中一个顶点的度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The degree of a vertex in the kth-power graph of a finite abelian group
The power graph of a given finite group is a simple undirected graph whose vertex set is the group itself, and there is an edge between any two distinct vertices if one is a power of the other. In this paper, we find a precise formula to count the degree of a vertex in the power graph of a finite abelian group of prime-power order. By using the degree formula, we give a new proof to show that the power graph of a cyclic group of prime-power order is complete. We finally determine the degree of a vertex in the power graph of a finite abelian group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信