MOHAWK:层次联邦学习的移动性和异构感知动态社区选择

Allen-Jasmin Farcas, Myungjin Lee, R. Kompella, Hugo Latapie, G. de Veciana, R. Marculescu
{"title":"MOHAWK:层次联邦学习的移动性和异构感知动态社区选择","authors":"Allen-Jasmin Farcas, Myungjin Lee, R. Kompella, Hugo Latapie, G. de Veciana, R. Marculescu","doi":"10.1145/3576842.3582378","DOIUrl":null,"url":null,"abstract":"The recent developments in Federated Learning (FL) focus on optimizing the learning process for data, hardware, and model heterogeneity. However, most approaches assume all devices are stationary, charging, and always connected to the Wi-Fi when training on local data. We argue that when real devices move around, the FL process is negatively impacted and the device energy spent for communication is increased. To mitigate such effects, we propose a dynamic community selection algorithm which improves the communication energy efficiency and two new aggregation strategies that boost the learning performance in Hierarchical FL (HFL). For real mobility traces, we show that compared to state-of-the-art HFL solutions, our approach is scalable, achieves better accuracy on multiple datasets, converges up to 3.88 × faster, and is significantly more energy efficient for both IID and non-IID scenarios.1","PeriodicalId":266438,"journal":{"name":"Proceedings of the 8th ACM/IEEE Conference on Internet of Things Design and Implementation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MOHAWK: Mobility and Heterogeneity-Aware Dynamic Community Selection for Hierarchical Federated Learning\",\"authors\":\"Allen-Jasmin Farcas, Myungjin Lee, R. Kompella, Hugo Latapie, G. de Veciana, R. Marculescu\",\"doi\":\"10.1145/3576842.3582378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent developments in Federated Learning (FL) focus on optimizing the learning process for data, hardware, and model heterogeneity. However, most approaches assume all devices are stationary, charging, and always connected to the Wi-Fi when training on local data. We argue that when real devices move around, the FL process is negatively impacted and the device energy spent for communication is increased. To mitigate such effects, we propose a dynamic community selection algorithm which improves the communication energy efficiency and two new aggregation strategies that boost the learning performance in Hierarchical FL (HFL). For real mobility traces, we show that compared to state-of-the-art HFL solutions, our approach is scalable, achieves better accuracy on multiple datasets, converges up to 3.88 × faster, and is significantly more energy efficient for both IID and non-IID scenarios.1\",\"PeriodicalId\":266438,\"journal\":{\"name\":\"Proceedings of the 8th ACM/IEEE Conference on Internet of Things Design and Implementation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM/IEEE Conference on Internet of Things Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3576842.3582378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM/IEEE Conference on Internet of Things Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3576842.3582378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

联邦学习(FL)的最新发展侧重于优化数据、硬件和模型异构的学习过程。然而,大多数方法假设所有设备都是固定的,充电的,并且在本地数据训练时始终连接到Wi-Fi。我们认为,当真实设备四处移动时,FL过程受到负面影响,设备用于通信的能量增加。为了减轻这种影响,我们提出了一种动态社区选择算法来提高通信能量效率,并提出了两种新的聚合策略来提高分层FL (HFL)的学习性能。对于真实的移动轨迹,我们表明,与最先进的HFL解决方案相比,我们的方法具有可扩展性,在多个数据集上实现了更好的准确性,收敛速度提高了3.88倍,并且在IID和非IID场景中都显着提高了能源效率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MOHAWK: Mobility and Heterogeneity-Aware Dynamic Community Selection for Hierarchical Federated Learning
The recent developments in Federated Learning (FL) focus on optimizing the learning process for data, hardware, and model heterogeneity. However, most approaches assume all devices are stationary, charging, and always connected to the Wi-Fi when training on local data. We argue that when real devices move around, the FL process is negatively impacted and the device energy spent for communication is increased. To mitigate such effects, we propose a dynamic community selection algorithm which improves the communication energy efficiency and two new aggregation strategies that boost the learning performance in Hierarchical FL (HFL). For real mobility traces, we show that compared to state-of-the-art HFL solutions, our approach is scalable, achieves better accuracy on multiple datasets, converges up to 3.88 × faster, and is significantly more energy efficient for both IID and non-IID scenarios.1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信