一种用于离线手写体汉字识别的振荡弹性图匹配模型

Raymond S. T. Lee, J. Liu
{"title":"一种用于离线手写体汉字识别的振荡弹性图匹配模型","authors":"Raymond S. T. Lee, J. Liu","doi":"10.1109/KES.1999.820179","DOIUrl":null,"url":null,"abstract":"Proposes a new application of evolutionary computing - the neural oscillatory elastic graph matching model (NOEGM) for the recognition of offline handwritten Chinese characters. NOEGM consists of three main modules, namely: (1) a feature extraction module using a Gabor filter; (2) a character segmentation module using a neural oscillatory model; and (3) a character recognition module using an elastic graph dynamic link model (EGDLM). In order to optimize the network's performance, a genetic algorithm optimization scheme is integrated into the proposed model. In our research, we applied a sample set of 3,000 handwritten Chinese characters and a test set of 1,000 scanned handwritten Chinese documents to a series of invariant tests, including translation, rotation, dilation and distortion. Experimental results reveal that the overall performance of NOEGM has achieved an average correct recognition rate of over 90%.","PeriodicalId":192359,"journal":{"name":"1999 Third International Conference on Knowledge-Based Intelligent Information Engineering Systems. Proceedings (Cat. No.99TH8410)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"An oscillatory elastic graph matching model for recognition of offline handwritten Chinese characters\",\"authors\":\"Raymond S. T. Lee, J. Liu\",\"doi\":\"10.1109/KES.1999.820179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proposes a new application of evolutionary computing - the neural oscillatory elastic graph matching model (NOEGM) for the recognition of offline handwritten Chinese characters. NOEGM consists of three main modules, namely: (1) a feature extraction module using a Gabor filter; (2) a character segmentation module using a neural oscillatory model; and (3) a character recognition module using an elastic graph dynamic link model (EGDLM). In order to optimize the network's performance, a genetic algorithm optimization scheme is integrated into the proposed model. In our research, we applied a sample set of 3,000 handwritten Chinese characters and a test set of 1,000 scanned handwritten Chinese documents to a series of invariant tests, including translation, rotation, dilation and distortion. Experimental results reveal that the overall performance of NOEGM has achieved an average correct recognition rate of over 90%.\",\"PeriodicalId\":192359,\"journal\":{\"name\":\"1999 Third International Conference on Knowledge-Based Intelligent Information Engineering Systems. Proceedings (Cat. No.99TH8410)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 Third International Conference on Knowledge-Based Intelligent Information Engineering Systems. Proceedings (Cat. No.99TH8410)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KES.1999.820179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 Third International Conference on Knowledge-Based Intelligent Information Engineering Systems. Proceedings (Cat. No.99TH8410)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KES.1999.820179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

提出了一种新的进化计算方法——神经振荡弹性图匹配模型(NOEGM)在离线手写体汉字识别中的应用。NOEGM由三个主要模块组成,即:(1)使用Gabor滤波器的特征提取模块;(2)基于神经振荡模型的字符分割模块;(3)采用弹性图动态链接模型(EGDLM)的字符识别模块。为了优化网络性能,在模型中引入了遗传算法优化方案。在我们的研究中,我们采用3000个手写汉字的样本集和1000个扫描的手写中文文档的测试集进行了一系列的不变测试,包括翻译、旋转、扩张和扭曲。实验结果表明,NOEGM的总体性能达到了90%以上的平均正确识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An oscillatory elastic graph matching model for recognition of offline handwritten Chinese characters
Proposes a new application of evolutionary computing - the neural oscillatory elastic graph matching model (NOEGM) for the recognition of offline handwritten Chinese characters. NOEGM consists of three main modules, namely: (1) a feature extraction module using a Gabor filter; (2) a character segmentation module using a neural oscillatory model; and (3) a character recognition module using an elastic graph dynamic link model (EGDLM). In order to optimize the network's performance, a genetic algorithm optimization scheme is integrated into the proposed model. In our research, we applied a sample set of 3,000 handwritten Chinese characters and a test set of 1,000 scanned handwritten Chinese documents to a series of invariant tests, including translation, rotation, dilation and distortion. Experimental results reveal that the overall performance of NOEGM has achieved an average correct recognition rate of over 90%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信