S. Boppart, G. Tearney, B. Bouma, J. Fujimoto, M. Brezinski
{"title":"细胞分化过程中胚胎形态的光学相干断层扫描","authors":"S. Boppart, G. Tearney, B. Bouma, J. Fujimoto, M. Brezinski","doi":"10.1364/aoipm.1996.cit231","DOIUrl":null,"url":null,"abstract":"Improved imaging of morphological changes has the potential of offering new insight into the complex process of embryonic development. Optical coherence tomography (OCT), is a new imaging technique for performing in vivo cross-sectional imaging of architectural morphology by measuring backscattered infrared light. This study investigates the application of OCT for imaging developing structure in Xenopus laevis (African frog) and Brachydanio rerio (zebra fish), two developmental biology animal models. Images are compared to corresponding histological preparations. Cross sectional imaging can be performed and structural morphology identified at greater imaging depths than possible with confocal and light microscopy. Repeated OCT imaging may be performed in vivo in order to track structural changes throughout development. Imaging in vivo microscopic embryonic morphology with OCT is a fundamental biological research application for the study of genetic disease.","PeriodicalId":368664,"journal":{"name":"Advances in Optical Imaging and Photon Migration","volume":"70 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical Coherence Tomography of Embryonic Morphology During Cellular Differentiation\",\"authors\":\"S. Boppart, G. Tearney, B. Bouma, J. Fujimoto, M. Brezinski\",\"doi\":\"10.1364/aoipm.1996.cit231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improved imaging of morphological changes has the potential of offering new insight into the complex process of embryonic development. Optical coherence tomography (OCT), is a new imaging technique for performing in vivo cross-sectional imaging of architectural morphology by measuring backscattered infrared light. This study investigates the application of OCT for imaging developing structure in Xenopus laevis (African frog) and Brachydanio rerio (zebra fish), two developmental biology animal models. Images are compared to corresponding histological preparations. Cross sectional imaging can be performed and structural morphology identified at greater imaging depths than possible with confocal and light microscopy. Repeated OCT imaging may be performed in vivo in order to track structural changes throughout development. Imaging in vivo microscopic embryonic morphology with OCT is a fundamental biological research application for the study of genetic disease.\",\"PeriodicalId\":368664,\"journal\":{\"name\":\"Advances in Optical Imaging and Photon Migration\",\"volume\":\"70 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Optical Imaging and Photon Migration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/aoipm.1996.cit231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Optical Imaging and Photon Migration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/aoipm.1996.cit231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optical Coherence Tomography of Embryonic Morphology During Cellular Differentiation
Improved imaging of morphological changes has the potential of offering new insight into the complex process of embryonic development. Optical coherence tomography (OCT), is a new imaging technique for performing in vivo cross-sectional imaging of architectural morphology by measuring backscattered infrared light. This study investigates the application of OCT for imaging developing structure in Xenopus laevis (African frog) and Brachydanio rerio (zebra fish), two developmental biology animal models. Images are compared to corresponding histological preparations. Cross sectional imaging can be performed and structural morphology identified at greater imaging depths than possible with confocal and light microscopy. Repeated OCT imaging may be performed in vivo in order to track structural changes throughout development. Imaging in vivo microscopic embryonic morphology with OCT is a fundamental biological research application for the study of genetic disease.