用自回归人工神经网络预测丙烷需求生成

A. Siddiqui, S. A. Raza
{"title":"用自回归人工神经网络预测丙烷需求生成","authors":"A. Siddiqui, S. A. Raza","doi":"10.1109/ICCIS54243.2021.9676379","DOIUrl":null,"url":null,"abstract":"Propane is a major crude oil byproduct generated by oil refineries. Its applications range from home heating to varied industrial and commercial purposes. Due to the nonlinear nature of the demand generation process, predicting this demand with traditional econometric approaches leads to inaccurate results. In this paper, we thus propose an alternative Autoregressive Neural Network (ARNN) based approach. We also employed the Autoregressive Integrated Moving Average (ARIMA) model to benchmark the performance of ARNN. The results show a 55% reduction in Mean Squared Error when ARNN is used over ARIMA. This improvement bears significant consequences for planning and decision-making by refineries.","PeriodicalId":165673,"journal":{"name":"2021 4th International Conference on Computing & Information Sciences (ICCIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting Propane Demand Generation with Autoregressive Artificial Neural Networks\",\"authors\":\"A. Siddiqui, S. A. Raza\",\"doi\":\"10.1109/ICCIS54243.2021.9676379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Propane is a major crude oil byproduct generated by oil refineries. Its applications range from home heating to varied industrial and commercial purposes. Due to the nonlinear nature of the demand generation process, predicting this demand with traditional econometric approaches leads to inaccurate results. In this paper, we thus propose an alternative Autoregressive Neural Network (ARNN) based approach. We also employed the Autoregressive Integrated Moving Average (ARIMA) model to benchmark the performance of ARNN. The results show a 55% reduction in Mean Squared Error when ARNN is used over ARIMA. This improvement bears significant consequences for planning and decision-making by refineries.\",\"PeriodicalId\":165673,\"journal\":{\"name\":\"2021 4th International Conference on Computing & Information Sciences (ICCIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 4th International Conference on Computing & Information Sciences (ICCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS54243.2021.9676379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Computing & Information Sciences (ICCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS54243.2021.9676379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

丙烷是炼油厂生产的主要原油副产品。它的应用范围从家庭供暖到各种工业和商业用途。由于需求产生过程的非线性性质,用传统的计量经济学方法预测这种需求会导致不准确的结果。因此,在本文中,我们提出了一种基于自回归神经网络(ARNN)的替代方法。我们还采用自回归综合移动平均(ARIMA)模型对ARNN的性能进行了基准测试。结果表明,在ARIMA上使用ARNN时,均方误差降低了55%。这一改进对炼油厂的规划和决策产生了重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Propane Demand Generation with Autoregressive Artificial Neural Networks
Propane is a major crude oil byproduct generated by oil refineries. Its applications range from home heating to varied industrial and commercial purposes. Due to the nonlinear nature of the demand generation process, predicting this demand with traditional econometric approaches leads to inaccurate results. In this paper, we thus propose an alternative Autoregressive Neural Network (ARNN) based approach. We also employed the Autoregressive Integrated Moving Average (ARIMA) model to benchmark the performance of ARNN. The results show a 55% reduction in Mean Squared Error when ARNN is used over ARIMA. This improvement bears significant consequences for planning and decision-making by refineries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信