圆上的Gabor变换

K. Fujita
{"title":"圆上的Gabor变换","authors":"K. Fujita","doi":"10.1109/ICWAPR.2014.6961302","DOIUrl":null,"url":null,"abstract":"In [2] and [3], we considered the Gabor transform of analytic functionals on the sphere in general dimension and we expressed it by a series expansion with the spherical harmonics and the Bessel functions. In this paper, following our previous results, we will consider the Gabor transform of analytic functionals, especially of square integrable functions on the circle (2-dimensional sphere), in more detail. Then we will construct the inverse Gabor transformation explicitly.","PeriodicalId":439086,"journal":{"name":"2014 International Conference on Wavelet Analysis and Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Gabor transformation on the circle\",\"authors\":\"K. Fujita\",\"doi\":\"10.1109/ICWAPR.2014.6961302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In [2] and [3], we considered the Gabor transform of analytic functionals on the sphere in general dimension and we expressed it by a series expansion with the spherical harmonics and the Bessel functions. In this paper, following our previous results, we will consider the Gabor transform of analytic functionals, especially of square integrable functions on the circle (2-dimensional sphere), in more detail. Then we will construct the inverse Gabor transformation explicitly.\",\"PeriodicalId\":439086,\"journal\":{\"name\":\"2014 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2014.6961302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2014.6961302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在[2]和[3]中,我们考虑了广义球面上解析泛函的Gabor变换,并将其用球面谐波和贝塞尔函数的级数展开来表示。在本文中,根据我们之前的结果,我们将更详细地考虑解析泛函的Gabor变换,特别是圆(二维球面)上的平方可积函数。然后明确地构造Gabor逆变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gabor transformation on the circle
In [2] and [3], we considered the Gabor transform of analytic functionals on the sphere in general dimension and we expressed it by a series expansion with the spherical harmonics and the Bessel functions. In this paper, following our previous results, we will consider the Gabor transform of analytic functionals, especially of square integrable functions on the circle (2-dimensional sphere), in more detail. Then we will construct the inverse Gabor transformation explicitly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信