基于直方图的高斯混合矢量量化图像检索

Sangoh Jeong, C. Won, R. Gray
{"title":"基于直方图的高斯混合矢量量化图像检索","authors":"Sangoh Jeong, C. Won, R. Gray","doi":"10.1109/ICME.2003.1221637","DOIUrl":null,"url":null,"abstract":"Histogram-based image retrieval requires some form of quantization since the raw color images result in large dimensionality in the histogram representation. Simple uniform quantization disregards the spatial information among pixels in making histograms. Since traditional vector quantization (VQ) with squared-error distortion employs only the first moment, it neglects the relationship among vectors. We propose Gauss mixture vector quantization (GMVQ) as the quantization method for a histogram-based image retrieval to capture the spatial information in the image via the Gaussian covariance structure. Two common histogram distance measures are used to evaluate the similarity of histograms resulting from GMVQ. Our result shows that GMVQ with a quadratic discriminant analysis (QDA) distortion outperforms the two typical quantization methods in the histogram- based image retrieval.","PeriodicalId":118560,"journal":{"name":"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Histogram-based image retrieval using Gauss mixture vector quantization\",\"authors\":\"Sangoh Jeong, C. Won, R. Gray\",\"doi\":\"10.1109/ICME.2003.1221637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Histogram-based image retrieval requires some form of quantization since the raw color images result in large dimensionality in the histogram representation. Simple uniform quantization disregards the spatial information among pixels in making histograms. Since traditional vector quantization (VQ) with squared-error distortion employs only the first moment, it neglects the relationship among vectors. We propose Gauss mixture vector quantization (GMVQ) as the quantization method for a histogram-based image retrieval to capture the spatial information in the image via the Gaussian covariance structure. Two common histogram distance measures are used to evaluate the similarity of histograms resulting from GMVQ. Our result shows that GMVQ with a quadratic discriminant analysis (QDA) distortion outperforms the two typical quantization methods in the histogram- based image retrieval.\",\"PeriodicalId\":118560,\"journal\":{\"name\":\"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2003.1221637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2003.1221637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

基于直方图的图像检索需要某种形式的量化,因为原始彩色图像会导致直方图表示中的大维度。简单的均匀量化在制作直方图时忽略了像素间的空间信息。由于具有平方误差失真的传统矢量量化(VQ)仅利用一阶矩,忽略了矢量之间的关系。本文提出高斯混合矢量量化(GMVQ)作为基于直方图的图像检索的量化方法,利用高斯协方差结构捕获图像中的空间信息。使用两个常见的直方图距离度量来评估由GMVQ产生的直方图的相似性。结果表明,在基于直方图的图像检索中,带有二次判别分析(QDA)失真的GMVQ方法优于两种典型的量化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Histogram-based image retrieval using Gauss mixture vector quantization
Histogram-based image retrieval requires some form of quantization since the raw color images result in large dimensionality in the histogram representation. Simple uniform quantization disregards the spatial information among pixels in making histograms. Since traditional vector quantization (VQ) with squared-error distortion employs only the first moment, it neglects the relationship among vectors. We propose Gauss mixture vector quantization (GMVQ) as the quantization method for a histogram-based image retrieval to capture the spatial information in the image via the Gaussian covariance structure. Two common histogram distance measures are used to evaluate the similarity of histograms resulting from GMVQ. Our result shows that GMVQ with a quadratic discriminant analysis (QDA) distortion outperforms the two typical quantization methods in the histogram- based image retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信