基于ARMA模型的汽车后市场需求预测

Yun Chen, Heng Zhao, Li Yu
{"title":"基于ARMA模型的汽车后市场需求预测","authors":"Yun Chen, Heng Zhao, Li Yu","doi":"10.1109/ICMSS.2010.5577867","DOIUrl":null,"url":null,"abstract":"The rapid development of automobile industry in China promotes the fast growth of the automotive aftermarket. Facing the fierce market competition, it is necessary for a company to forecast the demand for auto spare parts. This paper proposes a method based on ARMA model to fulfill the important task. The accuracy and ease of use of the method is illustrated through the case study with the sales data of a 4s shop in Shanghai.","PeriodicalId":329390,"journal":{"name":"2010 International Conference on Management and Service Science","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Demand Forecasting in Automotive Aftermarket Based on ARMA Model\",\"authors\":\"Yun Chen, Heng Zhao, Li Yu\",\"doi\":\"10.1109/ICMSS.2010.5577867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid development of automobile industry in China promotes the fast growth of the automotive aftermarket. Facing the fierce market competition, it is necessary for a company to forecast the demand for auto spare parts. This paper proposes a method based on ARMA model to fulfill the important task. The accuracy and ease of use of the method is illustrated through the case study with the sales data of a 4s shop in Shanghai.\",\"PeriodicalId\":329390,\"journal\":{\"name\":\"2010 International Conference on Management and Service Science\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Management and Service Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMSS.2010.5577867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Management and Service Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMSS.2010.5577867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

中国汽车工业的快速发展促进了汽车后市场的快速增长。面对激烈的市场竞争,企业有必要对汽车零配件的需求进行预测。本文提出了一种基于ARMA模型的方法来完成这一重要任务。以上海某4s店的销售数据为例,说明了该方法的准确性和易用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demand Forecasting in Automotive Aftermarket Based on ARMA Model
The rapid development of automobile industry in China promotes the fast growth of the automotive aftermarket. Facing the fierce market competition, it is necessary for a company to forecast the demand for auto spare parts. This paper proposes a method based on ARMA model to fulfill the important task. The accuracy and ease of use of the method is illustrated through the case study with the sales data of a 4s shop in Shanghai.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信