T. Boghdady, E. Eldin, Howaida M. Ragab, A. Elmorshedy
{"title":"基于回报期的冠状病毒群体免疫优化DG优化分配","authors":"T. Boghdady, E. Eldin, Howaida M. Ragab, A. Elmorshedy","doi":"10.1109/MEPCON55441.2022.10021711","DOIUrl":null,"url":null,"abstract":"Distribued Generations (DG) have economic, financial, and environmental benefits. DG reduces power losses in the distribution system but has a negative impact on the protection devices. In this article, the IEEE 33 bus system will be used and tested by adding up to three DG units using MATLAB/SIMULINK software. the optimization techniques that will be used are Grey Wolf Optimizer, Whale Optimization Algorithm, Genetic Algorithm, and Coronavirus Herd Immunity or COVID-19 optimization techniques to select the optimal site and size of the DG units based on the lowest pay-back period considering the voltage limits and power losses. The paper proposes a modified mutation operator for COVID-19 based on Gaussian and Cauchy mutations to have better performance and lower variance. The proposed algorithm is compared with the other optimization techniques. The proposed algorithm achieved better results, which proved to have competitive performance with state-of-the-art evolutionary algorithms.","PeriodicalId":174878,"journal":{"name":"2022 23rd International Middle East Power Systems Conference (MEPCON)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal DG Allocation Based on Pay-back Period by a Proposed Modification for Coronavirus Herd Immunity Optimization\",\"authors\":\"T. Boghdady, E. Eldin, Howaida M. Ragab, A. Elmorshedy\",\"doi\":\"10.1109/MEPCON55441.2022.10021711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distribued Generations (DG) have economic, financial, and environmental benefits. DG reduces power losses in the distribution system but has a negative impact on the protection devices. In this article, the IEEE 33 bus system will be used and tested by adding up to three DG units using MATLAB/SIMULINK software. the optimization techniques that will be used are Grey Wolf Optimizer, Whale Optimization Algorithm, Genetic Algorithm, and Coronavirus Herd Immunity or COVID-19 optimization techniques to select the optimal site and size of the DG units based on the lowest pay-back period considering the voltage limits and power losses. The paper proposes a modified mutation operator for COVID-19 based on Gaussian and Cauchy mutations to have better performance and lower variance. The proposed algorithm is compared with the other optimization techniques. The proposed algorithm achieved better results, which proved to have competitive performance with state-of-the-art evolutionary algorithms.\",\"PeriodicalId\":174878,\"journal\":{\"name\":\"2022 23rd International Middle East Power Systems Conference (MEPCON)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 23rd International Middle East Power Systems Conference (MEPCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEPCON55441.2022.10021711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 23rd International Middle East Power Systems Conference (MEPCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEPCON55441.2022.10021711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal DG Allocation Based on Pay-back Period by a Proposed Modification for Coronavirus Herd Immunity Optimization
Distribued Generations (DG) have economic, financial, and environmental benefits. DG reduces power losses in the distribution system but has a negative impact on the protection devices. In this article, the IEEE 33 bus system will be used and tested by adding up to three DG units using MATLAB/SIMULINK software. the optimization techniques that will be used are Grey Wolf Optimizer, Whale Optimization Algorithm, Genetic Algorithm, and Coronavirus Herd Immunity or COVID-19 optimization techniques to select the optimal site and size of the DG units based on the lowest pay-back period considering the voltage limits and power losses. The paper proposes a modified mutation operator for COVID-19 based on Gaussian and Cauchy mutations to have better performance and lower variance. The proposed algorithm is compared with the other optimization techniques. The proposed algorithm achieved better results, which proved to have competitive performance with state-of-the-art evolutionary algorithms.