一般递归的时空权衡

R. Verbeek
{"title":"一般递归的时空权衡","authors":"R. Verbeek","doi":"10.1109/SFCS.1981.50","DOIUrl":null,"url":null,"abstract":"A lower bound for the time-space trade-off of pebble games on PD-Graphs (which represent computations of push-down automata or recursion schemes) is proved, that is only a bit lower than the best known upper bound (the lower and upper time bound is about n ¿ 2 logn/log(s/log n)). The best lower bound known up to now is the bound for linear recursion (about n ¿ log n/log(s/log n) for s ≫ log n.","PeriodicalId":224735,"journal":{"name":"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1981-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Time-space trade-offs for general recursion\",\"authors\":\"R. Verbeek\",\"doi\":\"10.1109/SFCS.1981.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A lower bound for the time-space trade-off of pebble games on PD-Graphs (which represent computations of push-down automata or recursion schemes) is proved, that is only a bit lower than the best known upper bound (the lower and upper time bound is about n ¿ 2 logn/log(s/log n)). The best lower bound known up to now is the bound for linear recursion (about n ¿ log n/log(s/log n) for s ≫ log n.\",\"PeriodicalId\":224735,\"journal\":{\"name\":\"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1981-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1981.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1981.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

证明了pd - graph上卵石博弈的时空权衡的下界(表示下推自动机或递归方案的计算),它仅比已知的上界低一点(上下时间界约为n¿2 logn/log(s/log n))。目前已知的最好的下界是线性递归的下界(关于s∶log n的n¿log n/log(s/log n))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-space trade-offs for general recursion
A lower bound for the time-space trade-off of pebble games on PD-Graphs (which represent computations of push-down automata or recursion schemes) is proved, that is only a bit lower than the best known upper bound (the lower and upper time bound is about n ¿ 2 logn/log(s/log n)). The best lower bound known up to now is the bound for linear recursion (about n ¿ log n/log(s/log n) for s ≫ log n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信