一类三角多项式势的Sturm—Liouville算子特征值的计算

C. Nur
{"title":"一类三角多项式势的Sturm—Liouville算子特征值的计算","authors":"C. Nur","doi":"10.36753/mathenot.1110497","DOIUrl":null,"url":null,"abstract":"We provide estimates for the periodic and antiperiodic eigenvalues of non-self-adjoint Sturm--Liouville operators with a family of complex-valued trigonometric polynomial potentials. We even approximate complex eigenvalues by the roots of some polynomials derived from some iteration formulas. Moreover, we give numerical examples with error analysis.","PeriodicalId":127589,"journal":{"name":"Mathematical Sciences and Applications E-Notes","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing Eigenvalues of Sturm--Liouville Operators with a Family of Trigonometric Polynomial Potentials\",\"authors\":\"C. Nur\",\"doi\":\"10.36753/mathenot.1110497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide estimates for the periodic and antiperiodic eigenvalues of non-self-adjoint Sturm--Liouville operators with a family of complex-valued trigonometric polynomial potentials. We even approximate complex eigenvalues by the roots of some polynomials derived from some iteration formulas. Moreover, we give numerical examples with error analysis.\",\"PeriodicalId\":127589,\"journal\":{\"name\":\"Mathematical Sciences and Applications E-Notes\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Sciences and Applications E-Notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36753/mathenot.1110497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Sciences and Applications E-Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36753/mathenot.1110497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了具有复值三角多项式势族的非自伴随Sturm—Liouville算子的周期和反周期特征值的估计。我们甚至用一些由迭代公式导出的多项式的根来近似复特征值。并给出了数值算例,进行了误差分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing Eigenvalues of Sturm--Liouville Operators with a Family of Trigonometric Polynomial Potentials
We provide estimates for the periodic and antiperiodic eigenvalues of non-self-adjoint Sturm--Liouville operators with a family of complex-valued trigonometric polynomial potentials. We even approximate complex eigenvalues by the roots of some polynomials derived from some iteration formulas. Moreover, we give numerical examples with error analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信