{"title":"一类三角多项式势的Sturm—Liouville算子特征值的计算","authors":"C. Nur","doi":"10.36753/mathenot.1110497","DOIUrl":null,"url":null,"abstract":"We provide estimates for the periodic and antiperiodic eigenvalues of non-self-adjoint Sturm--Liouville operators with a family of complex-valued trigonometric polynomial potentials. We even approximate complex eigenvalues by the roots of some polynomials derived from some iteration formulas. Moreover, we give numerical examples with error analysis.","PeriodicalId":127589,"journal":{"name":"Mathematical Sciences and Applications E-Notes","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing Eigenvalues of Sturm--Liouville Operators with a Family of Trigonometric Polynomial Potentials\",\"authors\":\"C. Nur\",\"doi\":\"10.36753/mathenot.1110497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide estimates for the periodic and antiperiodic eigenvalues of non-self-adjoint Sturm--Liouville operators with a family of complex-valued trigonometric polynomial potentials. We even approximate complex eigenvalues by the roots of some polynomials derived from some iteration formulas. Moreover, we give numerical examples with error analysis.\",\"PeriodicalId\":127589,\"journal\":{\"name\":\"Mathematical Sciences and Applications E-Notes\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Sciences and Applications E-Notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36753/mathenot.1110497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Sciences and Applications E-Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36753/mathenot.1110497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computing Eigenvalues of Sturm--Liouville Operators with a Family of Trigonometric Polynomial Potentials
We provide estimates for the periodic and antiperiodic eigenvalues of non-self-adjoint Sturm--Liouville operators with a family of complex-valued trigonometric polynomial potentials. We even approximate complex eigenvalues by the roots of some polynomials derived from some iteration formulas. Moreover, we give numerical examples with error analysis.