维基百科中Sockpuppet帐户的自动检测

M. Sakib, Francesca Spezzano
{"title":"维基百科中Sockpuppet帐户的自动检测","authors":"M. Sakib, Francesca Spezzano","doi":"10.1109/ASONAM55673.2022.10068604","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of identifying sockpuppet accounts on Wikipedia. We formulate the problem as a binary classification task and propose a set of features based on user activity and the semantics of their contributions to separate sockpuppets from benign users. We tested our system on a dataset we built (and released to the research community) containing 17K accounts validated as sockpuppets. Experimental results show that our approach achieves an F1-score of 0.82 and outperforms other systems proposed in the literature. Moreover, our proposed approach is able to achieve an F1-score of 0.73 at detecting sockpuppet accounts by just considering their first edit.","PeriodicalId":423113,"journal":{"name":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated Detection of Sockpuppet Accounts in Wikipedia\",\"authors\":\"M. Sakib, Francesca Spezzano\",\"doi\":\"10.1109/ASONAM55673.2022.10068604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of identifying sockpuppet accounts on Wikipedia. We formulate the problem as a binary classification task and propose a set of features based on user activity and the semantics of their contributions to separate sockpuppets from benign users. We tested our system on a dataset we built (and released to the research community) containing 17K accounts validated as sockpuppets. Experimental results show that our approach achieves an F1-score of 0.82 and outperforms other systems proposed in the literature. Moreover, our proposed approach is able to achieve an F1-score of 0.73 at detecting sockpuppet accounts by just considering their first edit.\",\"PeriodicalId\":423113,\"journal\":{\"name\":\"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASONAM55673.2022.10068604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM55673.2022.10068604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文解决了在维基百科上识别马甲账户的问题。我们将这个问题表述为一个二元分类任务,并提出了一组基于用户活动和他们贡献的语义的特征,以区分袜子玩偶和良性用户。我们在我们构建的数据集(并发布给研究社区)上测试了我们的系统,其中包含17K个验证为sockpuppets的帐户。实验结果表明,该方法的f1得分为0.82,优于文献中提出的其他系统。此外,我们提出的方法能够通过仅考虑他们的第一次编辑来检测马甲账户,从而实现f1得分0.73。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Detection of Sockpuppet Accounts in Wikipedia
This paper addresses the problem of identifying sockpuppet accounts on Wikipedia. We formulate the problem as a binary classification task and propose a set of features based on user activity and the semantics of their contributions to separate sockpuppets from benign users. We tested our system on a dataset we built (and released to the research community) containing 17K accounts validated as sockpuppets. Experimental results show that our approach achieves an F1-score of 0.82 and outperforms other systems proposed in the literature. Moreover, our proposed approach is able to achieve an F1-score of 0.73 at detecting sockpuppet accounts by just considering their first edit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信