自动驾驶汽车的深度学习:机遇与挑战

Qing Rao, Jelena Frtunikj
{"title":"自动驾驶汽车的深度学习:机遇与挑战","authors":"Qing Rao, Jelena Frtunikj","doi":"10.1145/3194085.3194087","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence (AI) is revolutionizing the modern society. In the automotive industry, researchers and developers are actively pushing deep learning based approaches for autonomous driving. However, before a neural network finds its way into series production cars, it has to first undergo strict assessment concerning functional safety. The chances and challenges of incorporating deep learning for self-driving cars are presented in this paper.","PeriodicalId":360022,"journal":{"name":"2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"161","resultStr":"{\"title\":\"Deep Learning for Self-Driving Cars: Chances and Challenges\",\"authors\":\"Qing Rao, Jelena Frtunikj\",\"doi\":\"10.1145/3194085.3194087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Intelligence (AI) is revolutionizing the modern society. In the automotive industry, researchers and developers are actively pushing deep learning based approaches for autonomous driving. However, before a neural network finds its way into series production cars, it has to first undergo strict assessment concerning functional safety. The chances and challenges of incorporating deep learning for self-driving cars are presented in this paper.\",\"PeriodicalId\":360022,\"journal\":{\"name\":\"2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"161\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3194085.3194087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194085.3194087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 161

摘要

人工智能(AI)正在彻底改变现代社会。在汽车行业,研究人员和开发人员正在积极推动基于深度学习的自动驾驶方法。然而,在神经网络进入量产汽车之前,它必须首先经过严格的功能安全评估。本文介绍了将深度学习应用于自动驾驶汽车的机遇和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning for Self-Driving Cars: Chances and Challenges
Artificial Intelligence (AI) is revolutionizing the modern society. In the automotive industry, researchers and developers are actively pushing deep learning based approaches for autonomous driving. However, before a neural network finds its way into series production cars, it has to first undergo strict assessment concerning functional safety. The chances and challenges of incorporating deep learning for self-driving cars are presented in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信