{"title":"自动驾驶汽车的深度学习:机遇与挑战","authors":"Qing Rao, Jelena Frtunikj","doi":"10.1145/3194085.3194087","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence (AI) is revolutionizing the modern society. In the automotive industry, researchers and developers are actively pushing deep learning based approaches for autonomous driving. However, before a neural network finds its way into series production cars, it has to first undergo strict assessment concerning functional safety. The chances and challenges of incorporating deep learning for self-driving cars are presented in this paper.","PeriodicalId":360022,"journal":{"name":"2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"161","resultStr":"{\"title\":\"Deep Learning for Self-Driving Cars: Chances and Challenges\",\"authors\":\"Qing Rao, Jelena Frtunikj\",\"doi\":\"10.1145/3194085.3194087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Intelligence (AI) is revolutionizing the modern society. In the automotive industry, researchers and developers are actively pushing deep learning based approaches for autonomous driving. However, before a neural network finds its way into series production cars, it has to first undergo strict assessment concerning functional safety. The chances and challenges of incorporating deep learning for self-driving cars are presented in this paper.\",\"PeriodicalId\":360022,\"journal\":{\"name\":\"2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"161\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3194085.3194087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194085.3194087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Learning for Self-Driving Cars: Chances and Challenges
Artificial Intelligence (AI) is revolutionizing the modern society. In the automotive industry, researchers and developers are actively pushing deep learning based approaches for autonomous driving. However, before a neural network finds its way into series production cars, it has to first undergo strict assessment concerning functional safety. The chances and challenges of incorporating deep learning for self-driving cars are presented in this paper.