基于牛顿法的投资组合管理算法

A. Agarwal, Elad Hazan, Satyen Kale, R. Schapire
{"title":"基于牛顿法的投资组合管理算法","authors":"A. Agarwal, Elad Hazan, Satyen Kale, R. Schapire","doi":"10.1145/1143844.1143846","DOIUrl":null,"url":null,"abstract":"We experimentally study on-line investment algorithms first proposed by Agarwal and Hazan and extended by Hazan et al. which achieve almost the same wealth as the best constant-rebalanced portfolio determined in hindsight. These algorithms are the first to combine optimal logarithmic regret bounds with efficient deterministic computability. They are based on the Newton method for offline optimization which, unlike previous approaches, exploits second order information. After analyzing the algorithm using the potential function introduced by Agarwal and Hazan, we present extensive experiments on actual financial data. These experiments confirm the theoretical advantage of our algorithms, which yield higher returns and run considerably faster than previous algorithms with optimal regret. Additionally, we perform financial analysis using mean-variance calculations and the Sharpe ratio.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"212","resultStr":"{\"title\":\"Algorithms for portfolio management based on the Newton method\",\"authors\":\"A. Agarwal, Elad Hazan, Satyen Kale, R. Schapire\",\"doi\":\"10.1145/1143844.1143846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We experimentally study on-line investment algorithms first proposed by Agarwal and Hazan and extended by Hazan et al. which achieve almost the same wealth as the best constant-rebalanced portfolio determined in hindsight. These algorithms are the first to combine optimal logarithmic regret bounds with efficient deterministic computability. They are based on the Newton method for offline optimization which, unlike previous approaches, exploits second order information. After analyzing the algorithm using the potential function introduced by Agarwal and Hazan, we present extensive experiments on actual financial data. These experiments confirm the theoretical advantage of our algorithms, which yield higher returns and run considerably faster than previous algorithms with optimal regret. Additionally, we perform financial analysis using mean-variance calculations and the Sharpe ratio.\",\"PeriodicalId\":124011,\"journal\":{\"name\":\"Proceedings of the 23rd international conference on Machine learning\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"212\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd international conference on Machine learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1143844.1143846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 212

摘要

我们实验研究了由Agarwal和Hazan首先提出并由Hazan等人扩展的在线投资算法,该算法获得的财富几乎与事后确定的最佳恒定再平衡投资组合相同。这些算法是第一个将最优对数遗憾界与有效的确定性可计算性相结合的算法。它们基于牛顿离线优化方法,与以前的方法不同,它利用了二阶信息。在使用Agarwal和Hazan引入的势函数对算法进行分析之后,我们在实际金融数据上进行了大量的实验。这些实验证实了我们的算法在理论上的优势,它产生了更高的回报,并且比以前的算法运行得更快。此外,我们使用均值方差计算和夏普比率进行财务分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithms for portfolio management based on the Newton method
We experimentally study on-line investment algorithms first proposed by Agarwal and Hazan and extended by Hazan et al. which achieve almost the same wealth as the best constant-rebalanced portfolio determined in hindsight. These algorithms are the first to combine optimal logarithmic regret bounds with efficient deterministic computability. They are based on the Newton method for offline optimization which, unlike previous approaches, exploits second order information. After analyzing the algorithm using the potential function introduced by Agarwal and Hazan, we present extensive experiments on actual financial data. These experiments confirm the theoretical advantage of our algorithms, which yield higher returns and run considerably faster than previous algorithms with optimal regret. Additionally, we perform financial analysis using mean-variance calculations and the Sharpe ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信