使用directionlet的空间-频率量化

V. Velisavljevic, B. Beferull-Lozano, M. Vetterli
{"title":"使用directionlet的空间-频率量化","authors":"V. Velisavljevic, B. Beferull-Lozano, M. Vetterli","doi":"10.1109/ICIP.2007.4379271","DOIUrl":null,"url":null,"abstract":"In our previous work we proposed a construction of critically sampled perfect reconstruction transforms with directional vanishing moments (DVMs) imposed in the corresponding basis functions along different directions, called directionlets. Here, we combine the directionlets with the space-frequency quantization (SFQ) image compression method, originally based on the standard two-dimensional (2-D) wavelet transform (WT). We show that our new compression method outperforms the standard SFQ as well as the state-of-the-art compression methods, like SPIHT and JPEG-2000, in terms of the quality of compressed images, especially in a low-rate compression regime. We also show that the order of computational complexity remains the same, as compared to the complexity of the standard SFQ algorithm.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Space-Frequency Quantization using Directionlets\",\"authors\":\"V. Velisavljevic, B. Beferull-Lozano, M. Vetterli\",\"doi\":\"10.1109/ICIP.2007.4379271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our previous work we proposed a construction of critically sampled perfect reconstruction transforms with directional vanishing moments (DVMs) imposed in the corresponding basis functions along different directions, called directionlets. Here, we combine the directionlets with the space-frequency quantization (SFQ) image compression method, originally based on the standard two-dimensional (2-D) wavelet transform (WT). We show that our new compression method outperforms the standard SFQ as well as the state-of-the-art compression methods, like SPIHT and JPEG-2000, in terms of the quality of compressed images, especially in a low-rate compression regime. We also show that the order of computational complexity remains the same, as compared to the complexity of the standard SFQ algorithm.\",\"PeriodicalId\":131177,\"journal\":{\"name\":\"2007 IEEE International Conference on Image Processing\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2007.4379271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在我们之前的工作中,我们提出了一种构造严格采样的完美重构变换,该变换沿不同方向在相应的基函数中施加方向消失矩(dvm),称为方向let。在这里,我们将方向小波与空间频率量化(SFQ)图像压缩方法相结合,该方法最初基于标准二维(2-D)小波变换(WT)。我们表明,就压缩图像的质量而言,我们的新压缩方法优于标准的SFQ以及最先进的压缩方法,如SPIHT和JPEG-2000,特别是在低速率压缩状态下。我们还表明,与标准SFQ算法的复杂度相比,计算复杂度的顺序保持不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Space-Frequency Quantization using Directionlets
In our previous work we proposed a construction of critically sampled perfect reconstruction transforms with directional vanishing moments (DVMs) imposed in the corresponding basis functions along different directions, called directionlets. Here, we combine the directionlets with the space-frequency quantization (SFQ) image compression method, originally based on the standard two-dimensional (2-D) wavelet transform (WT). We show that our new compression method outperforms the standard SFQ as well as the state-of-the-art compression methods, like SPIHT and JPEG-2000, in terms of the quality of compressed images, especially in a low-rate compression regime. We also show that the order of computational complexity remains the same, as compared to the complexity of the standard SFQ algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信