基于1.5位帧对帧增量量化的图像实时唤醒应用的资源高效人脸检测器

Ning Pu, Kaiji Liu, Heyue Li, Nan Wu, Yaoyu Li, Wen Jia, Zhihua Wang, Hanjun Jiang
{"title":"基于1.5位帧对帧增量量化的图像实时唤醒应用的资源高效人脸检测器","authors":"Ning Pu, Kaiji Liu, Heyue Li, Nan Wu, Yaoyu Li, Wen Jia, Zhihua Wang, Hanjun Jiang","doi":"10.1109/ISCAS46773.2023.10182186","DOIUrl":null,"url":null,"abstract":"A resource-efficient neural-network-based face detector using 1.5-bit frame-to-frame delta quantization with diagonal spatial feature extraction method is proposed in this paper, which is designed for resource-limited always-on camera sensors. The proposed architecture completes analog-domain frame difference for motion sensing, which triggers digital-domain feature extraction. Based on the sparse and effective features, a lightweight convolutional neural network is devised as a classifier. A self-recorded dataset of 313 videos for humans of different appearances, light intensity and backgrounds is used to validate the performance of the proposed method. Simulation results show that the proposed method achieves 93.6% accuracy using only a $\\boldsymbol{50\\times 50}$ pixel array, which is higher than the prior discontinuous temporal change quantization method. Meanwhile, the conservatively estimated power consumption of the proposed method can be reduced by $\\mathbf{14 \\times}$ compared to the state-of-the-art work.","PeriodicalId":177320,"journal":{"name":"2023 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resource-efficient Face Detector Using 1.5-bit Frame-to-frame Delta Quantization for Image Based Always-on Wake-up Application\",\"authors\":\"Ning Pu, Kaiji Liu, Heyue Li, Nan Wu, Yaoyu Li, Wen Jia, Zhihua Wang, Hanjun Jiang\",\"doi\":\"10.1109/ISCAS46773.2023.10182186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A resource-efficient neural-network-based face detector using 1.5-bit frame-to-frame delta quantization with diagonal spatial feature extraction method is proposed in this paper, which is designed for resource-limited always-on camera sensors. The proposed architecture completes analog-domain frame difference for motion sensing, which triggers digital-domain feature extraction. Based on the sparse and effective features, a lightweight convolutional neural network is devised as a classifier. A self-recorded dataset of 313 videos for humans of different appearances, light intensity and backgrounds is used to validate the performance of the proposed method. Simulation results show that the proposed method achieves 93.6% accuracy using only a $\\\\boldsymbol{50\\\\times 50}$ pixel array, which is higher than the prior discontinuous temporal change quantization method. Meanwhile, the conservatively estimated power consumption of the proposed method can be reduced by $\\\\mathbf{14 \\\\times}$ compared to the state-of-the-art work.\",\"PeriodicalId\":177320,\"journal\":{\"name\":\"2023 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS46773.2023.10182186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS46773.2023.10182186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于1.5位帧间增量量化和对角空间特征提取方法的资源节约型神经网络人脸检测方法,并针对资源有限的始终在线相机传感器进行了设计。该架构完成了运动感知的模拟域帧差分,从而触发数字域特征提取。基于稀疏和有效的特征,设计了一个轻量级的卷积神经网络作为分类器。使用自录的313个视频数据集来验证所提出方法的性能,这些视频是针对不同外表、光照强度和背景的人拍摄的。仿真结果表明,该方法仅使用$\boldsymbol{50\times 50}$像素数组,准确率达到93.6%,高于先前的不连续时间变化量化方法。同时,与最先进的工作相比,该方法的保守估计功耗可降低$\mathbf{14 \times}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resource-efficient Face Detector Using 1.5-bit Frame-to-frame Delta Quantization for Image Based Always-on Wake-up Application
A resource-efficient neural-network-based face detector using 1.5-bit frame-to-frame delta quantization with diagonal spatial feature extraction method is proposed in this paper, which is designed for resource-limited always-on camera sensors. The proposed architecture completes analog-domain frame difference for motion sensing, which triggers digital-domain feature extraction. Based on the sparse and effective features, a lightweight convolutional neural network is devised as a classifier. A self-recorded dataset of 313 videos for humans of different appearances, light intensity and backgrounds is used to validate the performance of the proposed method. Simulation results show that the proposed method achieves 93.6% accuracy using only a $\boldsymbol{50\times 50}$ pixel array, which is higher than the prior discontinuous temporal change quantization method. Meanwhile, the conservatively estimated power consumption of the proposed method can be reduced by $\mathbf{14 \times}$ compared to the state-of-the-art work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信