C. T. Binh, Tran Huu Quoc, Duong Thanh Huan, H. Hien
{"title":"石墨烯片增强旋转功能梯度多孔梁的振动特性","authors":"C. T. Binh, Tran Huu Quoc, Duong Thanh Huan, H. Hien","doi":"10.31814/stce.huce(nuce)2021-15(4)-03","DOIUrl":null,"url":null,"abstract":"This work aims to study the vibration characteristics of the rotating functionally graded porous beam reinforced by graphene platelets. The beam is mounted and rotated around a hub with a constant velocity. The material properties vary along the thickness direction with two types of porosity distributions and two dispersion patterns of graphene platelet. The equations of motion based on the Timoshenko beam theory are obtained and solved using the Chebyshev-Ritz method. The effects of the parameters such as hub radius, rotating speed, weight fraction, porosity distribution, porosity coefficient, and dispersion model are presented. The present method results are also compared with numerical results available in the literature.","PeriodicalId":387908,"journal":{"name":"Journal of Science and Technology in Civil Engineering (STCE) - HUCE","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Vibration characteristics of rotating functionally graded porous beams reinforced by graphene platelets\",\"authors\":\"C. T. Binh, Tran Huu Quoc, Duong Thanh Huan, H. Hien\",\"doi\":\"10.31814/stce.huce(nuce)2021-15(4)-03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims to study the vibration characteristics of the rotating functionally graded porous beam reinforced by graphene platelets. The beam is mounted and rotated around a hub with a constant velocity. The material properties vary along the thickness direction with two types of porosity distributions and two dispersion patterns of graphene platelet. The equations of motion based on the Timoshenko beam theory are obtained and solved using the Chebyshev-Ritz method. The effects of the parameters such as hub radius, rotating speed, weight fraction, porosity distribution, porosity coefficient, and dispersion model are presented. The present method results are also compared with numerical results available in the literature.\",\"PeriodicalId\":387908,\"journal\":{\"name\":\"Journal of Science and Technology in Civil Engineering (STCE) - HUCE\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science and Technology in Civil Engineering (STCE) - HUCE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31814/stce.huce(nuce)2021-15(4)-03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Technology in Civil Engineering (STCE) - HUCE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31814/stce.huce(nuce)2021-15(4)-03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vibration characteristics of rotating functionally graded porous beams reinforced by graphene platelets
This work aims to study the vibration characteristics of the rotating functionally graded porous beam reinforced by graphene platelets. The beam is mounted and rotated around a hub with a constant velocity. The material properties vary along the thickness direction with two types of porosity distributions and two dispersion patterns of graphene platelet. The equations of motion based on the Timoshenko beam theory are obtained and solved using the Chebyshev-Ritz method. The effects of the parameters such as hub radius, rotating speed, weight fraction, porosity distribution, porosity coefficient, and dispersion model are presented. The present method results are also compared with numerical results available in the literature.