基于管道ELM-GAN模型的文档嵌入

Arefeh Yavary, H. Sajedi
{"title":"基于管道ELM-GAN模型的文档嵌入","authors":"Arefeh Yavary, H. Sajedi","doi":"10.1109/IMCOM51814.2021.9377413","DOIUrl":null,"url":null,"abstract":"Document Embedding methods are an impressive task in each machine learning or neural network based natural language processing task. This task is entitled by representation learning and knowledge representation, too. In ultimate the target of this task, each document outputs a representation format of text documents in order to be understandable for machine. Literature reviews in representation learning, shows that document embedding methods for text is weaker in compare with representation of image or signal. Also, in compare to other data like as image or signal, representation of text has more challenges. By this, this paper we suggested a piped process of Generative Adversarial Neural Network and Extreme Learning Machine technique for document embedding. The experimental results show that document embedding using this combination of Generative Adversarial Networks and Extreme learning machines is comparative with other available methods of document embedding.","PeriodicalId":275121,"journal":{"name":"2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Document Embedding using piped ELM-GAN Model\",\"authors\":\"Arefeh Yavary, H. Sajedi\",\"doi\":\"10.1109/IMCOM51814.2021.9377413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Document Embedding methods are an impressive task in each machine learning or neural network based natural language processing task. This task is entitled by representation learning and knowledge representation, too. In ultimate the target of this task, each document outputs a representation format of text documents in order to be understandable for machine. Literature reviews in representation learning, shows that document embedding methods for text is weaker in compare with representation of image or signal. Also, in compare to other data like as image or signal, representation of text has more challenges. By this, this paper we suggested a piped process of Generative Adversarial Neural Network and Extreme Learning Machine technique for document embedding. The experimental results show that document embedding using this combination of Generative Adversarial Networks and Extreme learning machines is comparative with other available methods of document embedding.\",\"PeriodicalId\":275121,\"journal\":{\"name\":\"2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCOM51814.2021.9377413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCOM51814.2021.9377413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文档嵌入方法是每个基于机器学习或神经网络的自然语言处理任务中令人印象深刻的任务。这一任务也被称为表征学习和知识表征。该任务的最终目标是,每个文档输出文本文档的表示格式,以便机器可以理解。在表征学习方面的文献综述表明,针对文本的文档嵌入方法相对于图像或信号的表征而言是较弱的。此外,与图像或信号等其他数据相比,文本的表示具有更多的挑战。在此基础上,本文提出了一种基于生成对抗神经网络和极限学习机的管道过程文档嵌入技术。实验结果表明,将生成式对抗网络和极限学习机相结合的文档嵌入方法与其他可用的文档嵌入方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Document Embedding using piped ELM-GAN Model
Document Embedding methods are an impressive task in each machine learning or neural network based natural language processing task. This task is entitled by representation learning and knowledge representation, too. In ultimate the target of this task, each document outputs a representation format of text documents in order to be understandable for machine. Literature reviews in representation learning, shows that document embedding methods for text is weaker in compare with representation of image or signal. Also, in compare to other data like as image or signal, representation of text has more challenges. By this, this paper we suggested a piped process of Generative Adversarial Neural Network and Extreme Learning Machine technique for document embedding. The experimental results show that document embedding using this combination of Generative Adversarial Networks and Extreme learning machines is comparative with other available methods of document embedding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信