概率空间上实值损失函数的风险界

Peng Wang, Yun-Chao Bai, Chun-Qin Zhang, Cai-Li Zhou
{"title":"概率空间上实值损失函数的风险界","authors":"Peng Wang, Yun-Chao Bai, Chun-Qin Zhang, Cai-Li Zhou","doi":"10.1109/ICMLC.2010.5580968","DOIUrl":null,"url":null,"abstract":"Statistical learning theory on probability space is an important part of Machine Learning. Based on the key theorem, the bounds of uniform convergence have significant meaning. These bounds determine generalization ability of the learning machines utilizing the empirical risk minimization induction principle. In this paper, the bounds on the risk for real-valued loss function of the learning processes on possibility space are discussed, and the rate of uniform convergence is estimated.","PeriodicalId":126080,"journal":{"name":"2010 International Conference on Machine Learning and Cybernetics","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The bounds on the risk for real-valued loss functions on possibility space\",\"authors\":\"Peng Wang, Yun-Chao Bai, Chun-Qin Zhang, Cai-Li Zhou\",\"doi\":\"10.1109/ICMLC.2010.5580968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical learning theory on probability space is an important part of Machine Learning. Based on the key theorem, the bounds of uniform convergence have significant meaning. These bounds determine generalization ability of the learning machines utilizing the empirical risk minimization induction principle. In this paper, the bounds on the risk for real-valued loss function of the learning processes on possibility space are discussed, and the rate of uniform convergence is estimated.\",\"PeriodicalId\":126080,\"journal\":{\"name\":\"2010 International Conference on Machine Learning and Cybernetics\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2010.5580968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.5580968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

概率空间统计学习理论是机器学习的重要组成部分。基于关键定理,一致收敛界具有重要意义。这些界限决定了学习机的泛化能力,利用经验风险最小化归纳原则。本文讨论了学习过程在可能性空间上的实值损失函数的风险界,并估计了学习过程的一致收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The bounds on the risk for real-valued loss functions on possibility space
Statistical learning theory on probability space is an important part of Machine Learning. Based on the key theorem, the bounds of uniform convergence have significant meaning. These bounds determine generalization ability of the learning machines utilizing the empirical risk minimization induction principle. In this paper, the bounds on the risk for real-valued loss function of the learning processes on possibility space are discussed, and the rate of uniform convergence is estimated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信