使用多个预测器为变更请求推荐相关的代码工件

Oliver Denninger
{"title":"使用多个预测器为变更请求推荐相关的代码工件","authors":"Oliver Denninger","doi":"10.1109/RSSE.2012.6233416","DOIUrl":null,"url":null,"abstract":"Finding code artifacts affected by a given change request is a time-consuming process in large software systems. Various approaches have been proposed to automate this activity, e.g., based on information retrieval. The performance of a particular prediction approach often highly depends on attributes like coding style or writing style of change request. Thus, we propose to use multiple prediction approaches in combination with machine learning. First experiments show that machine learning is well suitable to weight different prediction approaches for individual software projects and hence improve prediction performance.","PeriodicalId":193223,"journal":{"name":"2012 Third International Workshop on Recommendation Systems for Software Engineering (RSSE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Recommending relevant code artifacts for change requests using multiple predictors\",\"authors\":\"Oliver Denninger\",\"doi\":\"10.1109/RSSE.2012.6233416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finding code artifacts affected by a given change request is a time-consuming process in large software systems. Various approaches have been proposed to automate this activity, e.g., based on information retrieval. The performance of a particular prediction approach often highly depends on attributes like coding style or writing style of change request. Thus, we propose to use multiple prediction approaches in combination with machine learning. First experiments show that machine learning is well suitable to weight different prediction approaches for individual software projects and hence improve prediction performance.\",\"PeriodicalId\":193223,\"journal\":{\"name\":\"2012 Third International Workshop on Recommendation Systems for Software Engineering (RSSE)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Third International Workshop on Recommendation Systems for Software Engineering (RSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSSE.2012.6233416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Workshop on Recommendation Systems for Software Engineering (RSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSSE.2012.6233416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在大型软件系统中,查找受给定变更请求影响的代码工件是一个耗时的过程。已经提出了各种方法使这项活动自动化,例如,基于信息检索。特定预测方法的性能通常高度依赖于诸如编码风格或更改请求的编写风格之类的属性。因此,我们建议将多种预测方法与机器学习相结合。首先,实验表明机器学习非常适合对单个软件项目的不同预测方法进行加权,从而提高预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recommending relevant code artifacts for change requests using multiple predictors
Finding code artifacts affected by a given change request is a time-consuming process in large software systems. Various approaches have been proposed to automate this activity, e.g., based on information retrieval. The performance of a particular prediction approach often highly depends on attributes like coding style or writing style of change request. Thus, we propose to use multiple prediction approaches in combination with machine learning. First experiments show that machine learning is well suitable to weight different prediction approaches for individual software projects and hence improve prediction performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信