跨语言和低资源字素到音素转换的SIGMORPHON 2022共享任务

Arya D. McCarthy, Jackson L. Lee, Alexandra DeLucia, Travis M. Bartley, M. Agarwal, Lucas F. E. Ashby, L. Signore, Cameron Gibson, R. Raff, Winston Wu
{"title":"跨语言和低资源字素到音素转换的SIGMORPHON 2022共享任务","authors":"Arya D. McCarthy, Jackson L. Lee, Alexandra DeLucia, Travis M. Bartley, M. Agarwal, Lucas F. E. Ashby, L. Signore, Cameron Gibson, R. Raff, Winston Wu","doi":"10.18653/v1/2023.sigmorphon-1.27","DOIUrl":null,"url":null,"abstract":"Grapheme-to-phoneme conversion is an important component in many speech technologies, but until recently there were no multilingual benchmarks for this task. The third iteration of the SIGMORPHON shared task on multilingual grapheme-to-phoneme conversion features many improvements from the previous year’s task (Ashby et al., 2021), including additional languages, three subtasks varying the amount of available resources, extensive quality assurance procedures, and automated error analyses. Three teams submitted a total of fifteen systems, at best achieving relative reductions of word error rate of 14% in the crosslingual subtask and 14% in the very-low resource subtask. The generally consistent result is that cross-lingual transfer substantially helps grapheme-to-phoneme modeling, but not to the same degree as in-language examples.","PeriodicalId":186158,"journal":{"name":"Special Interest Group on Computational Morphology and Phonology Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The SIGMORPHON 2022 Shared Task on Cross-lingual and Low-Resource Grapheme-to-Phoneme Conversion\",\"authors\":\"Arya D. McCarthy, Jackson L. Lee, Alexandra DeLucia, Travis M. Bartley, M. Agarwal, Lucas F. E. Ashby, L. Signore, Cameron Gibson, R. Raff, Winston Wu\",\"doi\":\"10.18653/v1/2023.sigmorphon-1.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grapheme-to-phoneme conversion is an important component in many speech technologies, but until recently there were no multilingual benchmarks for this task. The third iteration of the SIGMORPHON shared task on multilingual grapheme-to-phoneme conversion features many improvements from the previous year’s task (Ashby et al., 2021), including additional languages, three subtasks varying the amount of available resources, extensive quality assurance procedures, and automated error analyses. Three teams submitted a total of fifteen systems, at best achieving relative reductions of word error rate of 14% in the crosslingual subtask and 14% in the very-low resource subtask. The generally consistent result is that cross-lingual transfer substantially helps grapheme-to-phoneme modeling, but not to the same degree as in-language examples.\",\"PeriodicalId\":186158,\"journal\":{\"name\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2023.sigmorphon-1.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Interest Group on Computational Morphology and Phonology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.sigmorphon-1.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

字素到音素的转换是许多语音技术的重要组成部分,但直到最近还没有多语言的基准。SIGMORPHON多语言字素到音素转换共享任务的第三次迭代比前一年的任务有许多改进(Ashby等人,2021),包括额外的语言、三个不同可用资源数量的子任务、广泛的质量保证程序和自动错误分析。三个团队总共提交了15个系统,最多在跨语言子任务中实现相对减少14%的单词错误率,在资源非常少的子任务中实现14%的错误率。普遍一致的结果是,跨语言迁移在很大程度上帮助了字素到音素的建模,但与语言内示例的程度不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The SIGMORPHON 2022 Shared Task on Cross-lingual and Low-Resource Grapheme-to-Phoneme Conversion
Grapheme-to-phoneme conversion is an important component in many speech technologies, but until recently there were no multilingual benchmarks for this task. The third iteration of the SIGMORPHON shared task on multilingual grapheme-to-phoneme conversion features many improvements from the previous year’s task (Ashby et al., 2021), including additional languages, three subtasks varying the amount of available resources, extensive quality assurance procedures, and automated error analyses. Three teams submitted a total of fifteen systems, at best achieving relative reductions of word error rate of 14% in the crosslingual subtask and 14% in the very-low resource subtask. The generally consistent result is that cross-lingual transfer substantially helps grapheme-to-phoneme modeling, but not to the same degree as in-language examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信