混合惯性传感器——基于原子干涉光机械加速度计融合的惯性传感器的未来展望

M. Warner, J. Grosse, L. Wörner, L. Kumanchik, D. Knoop, J. Schröder, J. Halbey, R. Riesner, C. Braxmaier
{"title":"混合惯性传感器——基于原子干涉光机械加速度计融合的惯性传感器的未来展望","authors":"M. Warner, J. Grosse, L. Wörner, L. Kumanchik, D. Knoop, J. Schröder, J. Halbey, R. Riesner, C. Braxmaier","doi":"10.1109/iss46986.2019.8943706","DOIUrl":null,"url":null,"abstract":"Positioning currently relies heavily on Global Navigation Satellite Systems (GNSS). Combined with classical accelerometers and gyroscopes, precise determination of orientation and position at any given time become available. However, but the availability of GNSS (e.g. GPS) is limited and not guaranteed at all times.In this paper we present an alternative based on atom interferometry using cold atom ensembles. An inertial sensor based on cold atoms allows, in theory, for nearly drift-free measurements of inertial forces with accuracies unreached by classical sensors, but the technology is still locked away in large physics laboratories [1].This paper introduces a compact device called SECAMP, which is capable of cooling atoms down to μ-Kelvin. SECAMP has the potential to measure inertial acceleration in three degrees of freedom. In the following, we present the current experimental setup of the apparatus and outline the next steps for the inertial sensor.","PeriodicalId":233184,"journal":{"name":"2019 DGON Inertial Sensors and Systems (ISS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid Inertial sensors – future prospects of inertial sensors based on atom interferometry fused with opto-mechanical accelerometers\",\"authors\":\"M. Warner, J. Grosse, L. Wörner, L. Kumanchik, D. Knoop, J. Schröder, J. Halbey, R. Riesner, C. Braxmaier\",\"doi\":\"10.1109/iss46986.2019.8943706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Positioning currently relies heavily on Global Navigation Satellite Systems (GNSS). Combined with classical accelerometers and gyroscopes, precise determination of orientation and position at any given time become available. However, but the availability of GNSS (e.g. GPS) is limited and not guaranteed at all times.In this paper we present an alternative based on atom interferometry using cold atom ensembles. An inertial sensor based on cold atoms allows, in theory, for nearly drift-free measurements of inertial forces with accuracies unreached by classical sensors, but the technology is still locked away in large physics laboratories [1].This paper introduces a compact device called SECAMP, which is capable of cooling atoms down to μ-Kelvin. SECAMP has the potential to measure inertial acceleration in three degrees of freedom. In the following, we present the current experimental setup of the apparatus and outline the next steps for the inertial sensor.\",\"PeriodicalId\":233184,\"journal\":{\"name\":\"2019 DGON Inertial Sensors and Systems (ISS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 DGON Inertial Sensors and Systems (ISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iss46986.2019.8943706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 DGON Inertial Sensors and Systems (ISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iss46986.2019.8943706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

定位目前严重依赖全球导航卫星系统(GNSS)。结合经典的加速度计和陀螺仪,可以在任何给定的时间精确地确定方向和位置。然而,全球导航卫星系统(如GPS)的可用性是有限的,并不是在任何时候都能保证的。本文提出了一种基于冷原子系综的原子干涉测量方法。理论上,基于冷原子的惯性传感器可以实现几乎无漂移的惯性力测量,其精度是传统传感器无法达到的,但这项技术仍被锁在大型物理实验室中。本文介绍了一种能够将原子冷却到μ开尔文的小型装置SECAMP。SECAMP具有测量三个自由度惯性加速度的潜力。在下文中,我们介绍了该装置的当前实验设置,并概述了惯性传感器的下一步工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Inertial sensors – future prospects of inertial sensors based on atom interferometry fused with opto-mechanical accelerometers
Positioning currently relies heavily on Global Navigation Satellite Systems (GNSS). Combined with classical accelerometers and gyroscopes, precise determination of orientation and position at any given time become available. However, but the availability of GNSS (e.g. GPS) is limited and not guaranteed at all times.In this paper we present an alternative based on atom interferometry using cold atom ensembles. An inertial sensor based on cold atoms allows, in theory, for nearly drift-free measurements of inertial forces with accuracies unreached by classical sensors, but the technology is still locked away in large physics laboratories [1].This paper introduces a compact device called SECAMP, which is capable of cooling atoms down to μ-Kelvin. SECAMP has the potential to measure inertial acceleration in three degrees of freedom. In the following, we present the current experimental setup of the apparatus and outline the next steps for the inertial sensor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信