基于深度学习的汽车预测性维护

S. Dash, Satyam Raj, Rahul Agarwal, Jibitesh Mishra
{"title":"基于深度学习的汽车预测性维护","authors":"S. Dash, Satyam Raj, Rahul Agarwal, Jibitesh Mishra","doi":"10.4018/ijaiml.20210701oa12","DOIUrl":null,"url":null,"abstract":"There are three types of maintenance management policy Run-tofailure (R2F), Preventive Maintenance (PvM) and Predictive Maintenance (PdM). In both R2F and PdM we have the data related to the maintenance cycle. In case of Preventive Maintenance (PvM) complete information about maintenance cycle is not available. Among these three maintenance policies, predictive Maintenance (PdM) is becoming a very important strategy as it can help us to minimize the repair time and the associated cost with it. In this paper we have proposed PdM, which allows the dynamic decision rules for the maintenance management. PdM is achieved by training the machine learning model with the datasets. It also helps in planning of maintenance schedules. We specially focused on two models that are Binary Classification and Recurrent Neural Network. In Binary Classification we classify whether our data belongs to the failure class or the non failure class. In Binary Classification the number of cycles is entered and classification model predicts whether it belongs to the failure/non failure class.","PeriodicalId":217541,"journal":{"name":"Int. J. Artif. Intell. Mach. Learn.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automobile Predictive Maintenance Using Deep Learning\",\"authors\":\"S. Dash, Satyam Raj, Rahul Agarwal, Jibitesh Mishra\",\"doi\":\"10.4018/ijaiml.20210701oa12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are three types of maintenance management policy Run-tofailure (R2F), Preventive Maintenance (PvM) and Predictive Maintenance (PdM). In both R2F and PdM we have the data related to the maintenance cycle. In case of Preventive Maintenance (PvM) complete information about maintenance cycle is not available. Among these three maintenance policies, predictive Maintenance (PdM) is becoming a very important strategy as it can help us to minimize the repair time and the associated cost with it. In this paper we have proposed PdM, which allows the dynamic decision rules for the maintenance management. PdM is achieved by training the machine learning model with the datasets. It also helps in planning of maintenance schedules. We specially focused on two models that are Binary Classification and Recurrent Neural Network. In Binary Classification we classify whether our data belongs to the failure class or the non failure class. In Binary Classification the number of cycles is entered and classification model predicts whether it belongs to the failure/non failure class.\",\"PeriodicalId\":217541,\"journal\":{\"name\":\"Int. J. Artif. Intell. Mach. Learn.\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Artif. Intell. Mach. Learn.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijaiml.20210701oa12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijaiml.20210701oa12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

维护管理策略包括从运行到故障(R2F)、预防性维护(PvM)和预测性维护(PdM)三种类型。在R2F和PdM中,我们都有与维护周期相关的数据。在预防性维护(PvM)的情况下,没有完整的维护周期信息。在这三种维护策略中,预测性维护(PdM)正成为一种非常重要的策略,因为它可以帮助我们最大限度地减少维修时间和相关成本。本文提出了PdM,它允许对维护管理进行动态决策规则。PdM通过使用数据集训练机器学习模型来实现。它还有助于计划维护时间表。我们特别关注了二值分类和递归神经网络这两个模型。在二值分类中,我们将数据分为故障类和非故障类。在二元分类中,输入循环次数,分类模型预测它是否属于故障/非故障类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automobile Predictive Maintenance Using Deep Learning
There are three types of maintenance management policy Run-tofailure (R2F), Preventive Maintenance (PvM) and Predictive Maintenance (PdM). In both R2F and PdM we have the data related to the maintenance cycle. In case of Preventive Maintenance (PvM) complete information about maintenance cycle is not available. Among these three maintenance policies, predictive Maintenance (PdM) is becoming a very important strategy as it can help us to minimize the repair time and the associated cost with it. In this paper we have proposed PdM, which allows the dynamic decision rules for the maintenance management. PdM is achieved by training the machine learning model with the datasets. It also helps in planning of maintenance schedules. We specially focused on two models that are Binary Classification and Recurrent Neural Network. In Binary Classification we classify whether our data belongs to the failure class or the non failure class. In Binary Classification the number of cycles is entered and classification model predicts whether it belongs to the failure/non failure class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信