基于多神经网络的红外火焰探测系统

J. Huseynov, S. Baliga, Alan Widmer, Z. Boger
{"title":"基于多神经网络的红外火焰探测系统","authors":"J. Huseynov, S. Baliga, Alan Widmer, Z. Boger","doi":"10.1109/IJCNN.2007.4371026","DOIUrl":null,"url":null,"abstract":"A model for an infrared (IR) flame detection system using multiple artificial neural networks (ANN) is presented. The present work offers significant improvements over our previous design (Huseynov et al., 2005). Feature extraction only in the relevant frequency band using joint time-frequency analysis yields an input to a series of conjugate-gradient (CG) method-based ANNs. Each ANN is trained to distinguish all hydrocarbon flames from a particular type of environmental nuisance and ambient noise. Signal saturation caused by the increased intensity of IR sources at closer distances is resolved by adjustable gain control.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Infrared Flame Detection System Using Multiple Neural Networks\",\"authors\":\"J. Huseynov, S. Baliga, Alan Widmer, Z. Boger\",\"doi\":\"10.1109/IJCNN.2007.4371026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model for an infrared (IR) flame detection system using multiple artificial neural networks (ANN) is presented. The present work offers significant improvements over our previous design (Huseynov et al., 2005). Feature extraction only in the relevant frequency band using joint time-frequency analysis yields an input to a series of conjugate-gradient (CG) method-based ANNs. Each ANN is trained to distinguish all hydrocarbon flames from a particular type of environmental nuisance and ambient noise. Signal saturation caused by the increased intensity of IR sources at closer distances is resolved by adjustable gain control.\",\"PeriodicalId\":350091,\"journal\":{\"name\":\"2007 International Joint Conference on Neural Networks\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2007.4371026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4371026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种基于多个人工神经网络的红外火焰探测系统模型。目前的工作比我们以前的设计有了显著的改进(Huseynov et al., 2005)。仅在相关频带中使用联合时频分析提取特征,产生一系列基于共轭梯度(CG)方法的人工神经网络的输入。每个人工神经网络都经过训练,以区分所有碳氢化合物火焰与特定类型的环境滋扰和环境噪声。由近距离红外光源强度增加引起的信号饱和可通过可调增益控制来解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infrared Flame Detection System Using Multiple Neural Networks
A model for an infrared (IR) flame detection system using multiple artificial neural networks (ANN) is presented. The present work offers significant improvements over our previous design (Huseynov et al., 2005). Feature extraction only in the relevant frequency band using joint time-frequency analysis yields an input to a series of conjugate-gradient (CG) method-based ANNs. Each ANN is trained to distinguish all hydrocarbon flames from a particular type of environmental nuisance and ambient noise. Signal saturation caused by the increased intensity of IR sources at closer distances is resolved by adjustable gain control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信