{"title":"球梁系统的神经模糊控制","authors":"Ashwani Kharola, P. Patil","doi":"10.4018/IJEOE.2017040104","DOIUrl":null,"url":null,"abstract":"This paper presents an offline control of ball and beam system using fuzzy logic. The objective is to control ball position and beam orientation using fuzzy controllers. A Matlab/Simulink model of the proposed system has been designed using Newton's equations of motion. The fuzzy controllers were built using seven gbell membership functions. The performance of proposed controllers was compared in terms of settling time, steady state error and overshoot. The simulation results are shown with the help of graphs and tables which illustrates the effectiveness and robustness of proposed technique.","PeriodicalId":246250,"journal":{"name":"Int. J. Energy Optim. Eng.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Neural Fuzzy Control of Ball and Beam System\",\"authors\":\"Ashwani Kharola, P. Patil\",\"doi\":\"10.4018/IJEOE.2017040104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an offline control of ball and beam system using fuzzy logic. The objective is to control ball position and beam orientation using fuzzy controllers. A Matlab/Simulink model of the proposed system has been designed using Newton's equations of motion. The fuzzy controllers were built using seven gbell membership functions. The performance of proposed controllers was compared in terms of settling time, steady state error and overshoot. The simulation results are shown with the help of graphs and tables which illustrates the effectiveness and robustness of proposed technique.\",\"PeriodicalId\":246250,\"journal\":{\"name\":\"Int. J. Energy Optim. Eng.\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Energy Optim. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJEOE.2017040104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Energy Optim. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJEOE.2017040104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents an offline control of ball and beam system using fuzzy logic. The objective is to control ball position and beam orientation using fuzzy controllers. A Matlab/Simulink model of the proposed system has been designed using Newton's equations of motion. The fuzzy controllers were built using seven gbell membership functions. The performance of proposed controllers was compared in terms of settling time, steady state error and overshoot. The simulation results are shown with the help of graphs and tables which illustrates the effectiveness and robustness of proposed technique.