基于深度神经网络的说话人嵌入端到端说话人验证

David Snyder, Pegah Ghahremani, Daniel Povey, D. Garcia-Romero, Yishay Carmiel, S. Khudanpur
{"title":"基于深度神经网络的说话人嵌入端到端说话人验证","authors":"David Snyder, Pegah Ghahremani, Daniel Povey, D. Garcia-Romero, Yishay Carmiel, S. Khudanpur","doi":"10.1109/SLT.2016.7846260","DOIUrl":null,"url":null,"abstract":"In this study, we investigate an end-to-end text-independent speaker verification system. The architecture consists of a deep neural network that takes a variable length speech segment and maps it to a speaker embedding. The objective function separates same-speaker and different-speaker pairs, and is reused during verification. Similar systems have recently shown promise for text-dependent verification, but we believe that this is unexplored for the text-independent task. We show that given a large number of training speakers, the proposed system outperforms an i-vector baseline in equal error-rate (EER) and at low miss rates. Relative to the baseline, the end-to-end system reduces EER by 13% average and 29% pooled across test conditions. The fused system achieves a reduction of 32% average and 38% pooled.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"332","resultStr":"{\"title\":\"Deep neural network-based speaker embeddings for end-to-end speaker verification\",\"authors\":\"David Snyder, Pegah Ghahremani, Daniel Povey, D. Garcia-Romero, Yishay Carmiel, S. Khudanpur\",\"doi\":\"10.1109/SLT.2016.7846260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we investigate an end-to-end text-independent speaker verification system. The architecture consists of a deep neural network that takes a variable length speech segment and maps it to a speaker embedding. The objective function separates same-speaker and different-speaker pairs, and is reused during verification. Similar systems have recently shown promise for text-dependent verification, but we believe that this is unexplored for the text-independent task. We show that given a large number of training speakers, the proposed system outperforms an i-vector baseline in equal error-rate (EER) and at low miss rates. Relative to the baseline, the end-to-end system reduces EER by 13% average and 29% pooled across test conditions. The fused system achieves a reduction of 32% average and 38% pooled.\",\"PeriodicalId\":281635,\"journal\":{\"name\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"332\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2016.7846260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 332

摘要

在本研究中,我们研究了一个端到端独立于文本的说话人验证系统。该体系结构由一个深度神经网络组成,该网络接受可变长度的语音片段并将其映射到说话人嵌入。目标函数将同一发言者和不同发言者对分开,并在验证期间重用。类似的系统最近显示出对依赖文本的验证的希望,但我们认为这对于独立于文本的任务来说是未知的。我们表明,给定大量的训练说话者,所提出的系统在相等错误率(EER)和低缺失率方面优于i向量基线。相对于基线,端到端系统将EER平均降低13%,在测试条件下降低29%。融合系统平均减少32%,合并后减少38%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep neural network-based speaker embeddings for end-to-end speaker verification
In this study, we investigate an end-to-end text-independent speaker verification system. The architecture consists of a deep neural network that takes a variable length speech segment and maps it to a speaker embedding. The objective function separates same-speaker and different-speaker pairs, and is reused during verification. Similar systems have recently shown promise for text-dependent verification, but we believe that this is unexplored for the text-independent task. We show that given a large number of training speakers, the proposed system outperforms an i-vector baseline in equal error-rate (EER) and at low miss rates. Relative to the baseline, the end-to-end system reduces EER by 13% average and 29% pooled across test conditions. The fused system achieves a reduction of 32% average and 38% pooled.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信