一种评估机器人自主导航环境复杂性的CNN方法

D. Sartori, G. Ermacora, L. Pei, Danping Zou, Wenxian Yu
{"title":"一种评估机器人自主导航环境复杂性的CNN方法","authors":"D. Sartori, G. Ermacora, L. Pei, Danping Zou, Wenxian Yu","doi":"10.1109/ICMRA51221.2020.9398356","DOIUrl":null,"url":null,"abstract":"Growing interest exists in the evaluation of mobile robots performing autonomous navigation. The environment where the robot operates plays an important role in the successful execution of its autonomous mission. It is therefore crucial to assess the complexity of the environment where the vehicle is deployed. In this paper, we identify two parameters which represent meaningful metrics for the evaluation of how challenging a 2D environment is for autonomous navigation. We show how these two parameters can be estimated with a CNN architecture, given as input only a map of the environment. The method is validated on two different datasets and proves successful in achieving very accurate prediction results.","PeriodicalId":160127,"journal":{"name":"2020 3rd International Conference on Mechatronics, Robotics and Automation (ICMRA)","volume":"1854 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A CNN Approach to Assess Environment Complexity for Robotics Autonomous Navigation\",\"authors\":\"D. Sartori, G. Ermacora, L. Pei, Danping Zou, Wenxian Yu\",\"doi\":\"10.1109/ICMRA51221.2020.9398356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Growing interest exists in the evaluation of mobile robots performing autonomous navigation. The environment where the robot operates plays an important role in the successful execution of its autonomous mission. It is therefore crucial to assess the complexity of the environment where the vehicle is deployed. In this paper, we identify two parameters which represent meaningful metrics for the evaluation of how challenging a 2D environment is for autonomous navigation. We show how these two parameters can be estimated with a CNN architecture, given as input only a map of the environment. The method is validated on two different datasets and proves successful in achieving very accurate prediction results.\",\"PeriodicalId\":160127,\"journal\":{\"name\":\"2020 3rd International Conference on Mechatronics, Robotics and Automation (ICMRA)\",\"volume\":\"1854 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 3rd International Conference on Mechatronics, Robotics and Automation (ICMRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMRA51221.2020.9398356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Mechatronics, Robotics and Automation (ICMRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMRA51221.2020.9398356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人们对移动机器人自主导航的评估越来越感兴趣。机器人操作的环境对其自主任务的成功执行起着重要的作用。因此,评估车辆部署环境的复杂性至关重要。在本文中,我们确定了两个参数,它们代表了评估2D环境对自主导航的挑战程度的有意义的指标。我们展示了如何使用CNN架构来估计这两个参数,仅将环境地图作为输入。在两个不同的数据集上对该方法进行了验证,证明该方法能够获得非常准确的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A CNN Approach to Assess Environment Complexity for Robotics Autonomous Navigation
Growing interest exists in the evaluation of mobile robots performing autonomous navigation. The environment where the robot operates plays an important role in the successful execution of its autonomous mission. It is therefore crucial to assess the complexity of the environment where the vehicle is deployed. In this paper, we identify two parameters which represent meaningful metrics for the evaluation of how challenging a 2D environment is for autonomous navigation. We show how these two parameters can be estimated with a CNN architecture, given as input only a map of the environment. The method is validated on two different datasets and proves successful in achieving very accurate prediction results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信