基于深度卷积递归神经网络的文本定性特征增强论文自动评分

NLP-TEA@ACL Pub Date : 2018-07-01 DOI:10.18653/v1/W18-3713
Tirthankar Dasgupta, Abir Naskar, Lipika Dey, Rupsa Saha
{"title":"基于深度卷积递归神经网络的文本定性特征增强论文自动评分","authors":"Tirthankar Dasgupta, Abir Naskar, Lipika Dey, Rupsa Saha","doi":"10.18653/v1/W18-3713","DOIUrl":null,"url":null,"abstract":"In this paper we present a qualitatively enhanced deep convolution recurrent neural network for computing the quality of a text in an automatic essay scoring task. The novelty of the work lies in the fact that instead of considering only the word and sentence representation of a text, we try to augment the different complex linguistic, cognitive and psycological features associated within a text document along with a hierarchical convolution recurrent neural network framework. Our preliminary investigation shows that incorporation of such qualitative feature vectors along with standard word/sentence embeddings can give us better understanding about improving the overall evaluation of the input essays.","PeriodicalId":321264,"journal":{"name":"NLP-TEA@ACL","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Augmenting Textual Qualitative Features in Deep Convolution Recurrent Neural Network for Automatic Essay Scoring\",\"authors\":\"Tirthankar Dasgupta, Abir Naskar, Lipika Dey, Rupsa Saha\",\"doi\":\"10.18653/v1/W18-3713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a qualitatively enhanced deep convolution recurrent neural network for computing the quality of a text in an automatic essay scoring task. The novelty of the work lies in the fact that instead of considering only the word and sentence representation of a text, we try to augment the different complex linguistic, cognitive and psycological features associated within a text document along with a hierarchical convolution recurrent neural network framework. Our preliminary investigation shows that incorporation of such qualitative feature vectors along with standard word/sentence embeddings can give us better understanding about improving the overall evaluation of the input essays.\",\"PeriodicalId\":321264,\"journal\":{\"name\":\"NLP-TEA@ACL\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NLP-TEA@ACL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W18-3713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NLP-TEA@ACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-3713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

在本文中,我们提出了一种定性增强的深度卷积递归神经网络,用于计算自动作文评分任务中的文本质量。这项工作的新颖之处在于,我们不是只考虑文本的单词和句子表示,而是试图通过分层卷积递归神经网络框架来增强文本文档中相关的不同复杂的语言、认知和心理特征。我们的初步调查表明,将这种定性特征向量与标准的词/句子嵌入相结合,可以让我们更好地理解如何提高输入文章的整体评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Augmenting Textual Qualitative Features in Deep Convolution Recurrent Neural Network for Automatic Essay Scoring
In this paper we present a qualitatively enhanced deep convolution recurrent neural network for computing the quality of a text in an automatic essay scoring task. The novelty of the work lies in the fact that instead of considering only the word and sentence representation of a text, we try to augment the different complex linguistic, cognitive and psycological features associated within a text document along with a hierarchical convolution recurrent neural network framework. Our preliminary investigation shows that incorporation of such qualitative feature vectors along with standard word/sentence embeddings can give us better understanding about improving the overall evaluation of the input essays.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信