有限支撑结构上的序关系

A. Alexandru, Gabriel Ciobanu
{"title":"有限支撑结构上的序关系","authors":"A. Alexandru, Gabriel Ciobanu","doi":"10.1109/SYNASC.2018.00030","DOIUrl":null,"url":null,"abstract":"We present some properties of the order relations in the framework of finitely supported structures. We particularly analyze partially ordered sets, lattices and Galois connections, presenting specific properties (regarding cardinality order, cardinality arithmetic and fixed points) in the framework of finitely supported algebraic structures, as well as properties that are naturally extended from the classical Zermelo-Fraenkel framework by replacing 'structure' with 'atomic finitely supported structure'.","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Order Relations Over Finitely Supported Structures\",\"authors\":\"A. Alexandru, Gabriel Ciobanu\",\"doi\":\"10.1109/SYNASC.2018.00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present some properties of the order relations in the framework of finitely supported structures. We particularly analyze partially ordered sets, lattices and Galois connections, presenting specific properties (regarding cardinality order, cardinality arithmetic and fixed points) in the framework of finitely supported algebraic structures, as well as properties that are naturally extended from the classical Zermelo-Fraenkel framework by replacing 'structure' with 'atomic finitely supported structure'.\",\"PeriodicalId\":273805,\"journal\":{\"name\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2018.00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给出了有限支撑结构框架中阶关系的一些性质。我们特别分析了部分有序集,格和伽罗瓦连接,在有限支持代数结构的框架中提出了特定的性质(关于基数顺序,基数算术和不动点),以及通过将“结构”替换为“原子有限支持结构”从经典Zermelo-Fraenkel框架中自然扩展出来的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Order Relations Over Finitely Supported Structures
We present some properties of the order relations in the framework of finitely supported structures. We particularly analyze partially ordered sets, lattices and Galois connections, presenting specific properties (regarding cardinality order, cardinality arithmetic and fixed points) in the framework of finitely supported algebraic structures, as well as properties that are naturally extended from the classical Zermelo-Fraenkel framework by replacing 'structure' with 'atomic finitely supported structure'.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信