无人机自主俯仰的地标检测与识别算法

Xiaoxiao Xie, Yan Ding, Xinliang Huang
{"title":"无人机自主俯仰的地标检测与识别算法","authors":"Xiaoxiao Xie, Yan Ding, Xinliang Huang","doi":"10.1109/ICUS48101.2019.8996073","DOIUrl":null,"url":null,"abstract":"Landmark detection and recognition algorithm is a very important technology for vision-based Unmanned Aerial Vehicles (UAVs) autonomous pitching. The deformation and rotation of landmarks and the background distraction will be the challenges for detection and recognition. Based on Support Vector Machine (SVM) and the appearance features of landmarks, a landmark detection and recognition algorithm is proposed in this paper. The algorithm presents a landmark detection scheme based on ellipse detection which forms ellipses by optimized arcs and estimates parameters in a decomposed space using Hough transform. To get better edge features, a segmentation is designed to reduce the background noise. Due to the lack of direction information of landmarks in detection procedure, a SVM classifier with a multi-direction voting mechanism is presented for recognition. We expand the training sample set through the affine transformation and make a vote on classification results from multiple directions to achieve accurate landmark recognition. Experimental results show that our landmark detection and recognition algorithm is effective on the UAV platform and the adaptability to the environment is strong.","PeriodicalId":344181,"journal":{"name":"2019 IEEE International Conference on Unmanned Systems (ICUS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Landmark Detection and Recognition Algorithm for UAV Autonomous Pitching\",\"authors\":\"Xiaoxiao Xie, Yan Ding, Xinliang Huang\",\"doi\":\"10.1109/ICUS48101.2019.8996073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Landmark detection and recognition algorithm is a very important technology for vision-based Unmanned Aerial Vehicles (UAVs) autonomous pitching. The deformation and rotation of landmarks and the background distraction will be the challenges for detection and recognition. Based on Support Vector Machine (SVM) and the appearance features of landmarks, a landmark detection and recognition algorithm is proposed in this paper. The algorithm presents a landmark detection scheme based on ellipse detection which forms ellipses by optimized arcs and estimates parameters in a decomposed space using Hough transform. To get better edge features, a segmentation is designed to reduce the background noise. Due to the lack of direction information of landmarks in detection procedure, a SVM classifier with a multi-direction voting mechanism is presented for recognition. We expand the training sample set through the affine transformation and make a vote on classification results from multiple directions to achieve accurate landmark recognition. Experimental results show that our landmark detection and recognition algorithm is effective on the UAV platform and the adaptability to the environment is strong.\",\"PeriodicalId\":344181,\"journal\":{\"name\":\"2019 IEEE International Conference on Unmanned Systems (ICUS)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Unmanned Systems (ICUS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUS48101.2019.8996073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Unmanned Systems (ICUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUS48101.2019.8996073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

地标检测与识别算法是实现基于视觉的无人机自主俯仰的一项重要技术。地标的变形和旋转以及背景的干扰将是检测和识别的挑战。本文提出了一种基于支持向量机(SVM)和地标外观特征的地标检测与识别算法。该算法提出了一种基于椭圆检测的地标检测方案,利用优化后的圆弧形成椭圆,并利用霍夫变换对分解后的空间进行参数估计。为了得到更好的边缘特征,设计了一种减少背景噪声的分割方法。针对检测过程中缺少地标方向信息的问题,提出了一种基于多方向投票机制的支持向量机分类器进行识别。我们通过仿射变换对训练样本集进行扩展,并对多个方向的分类结果进行投票,实现准确的地标识别。实验结果表明,该算法在无人机平台上是有效的,对环境的适应性强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Landmark Detection and Recognition Algorithm for UAV Autonomous Pitching
Landmark detection and recognition algorithm is a very important technology for vision-based Unmanned Aerial Vehicles (UAVs) autonomous pitching. The deformation and rotation of landmarks and the background distraction will be the challenges for detection and recognition. Based on Support Vector Machine (SVM) and the appearance features of landmarks, a landmark detection and recognition algorithm is proposed in this paper. The algorithm presents a landmark detection scheme based on ellipse detection which forms ellipses by optimized arcs and estimates parameters in a decomposed space using Hough transform. To get better edge features, a segmentation is designed to reduce the background noise. Due to the lack of direction information of landmarks in detection procedure, a SVM classifier with a multi-direction voting mechanism is presented for recognition. We expand the training sample set through the affine transformation and make a vote on classification results from multiple directions to achieve accurate landmark recognition. Experimental results show that our landmark detection and recognition algorithm is effective on the UAV platform and the adaptability to the environment is strong.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信