在Google+和Twitter上分析聚合语义支持的用户建模,以进行个性化链接推荐

Guangyuan Piao, J. Breslin
{"title":"在Google+和Twitter上分析聚合语义支持的用户建模,以进行个性化链接推荐","authors":"Guangyuan Piao, J. Breslin","doi":"10.1145/2930238.2930278","DOIUrl":null,"url":null,"abstract":"In this paper, we study if reusing Google+ profiles can provide reliable recommendations on Twitter to resolve the cold start problem. Next, we investigate the impact of giving different weights for aggregating user profiles from two OSNs and present that giving a higher weight to the targeted OSN profile for aggregation allows the best performance in the context of a personalized link recommender system. Finally, we propose a user modeling strategy which combines entity-and category-based user profiles using with a discounting strategy. Results show that our proposed strategy improves the quality of user modeling significantly compared to the baseline method.","PeriodicalId":339100,"journal":{"name":"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Analyzing Aggregated Semantics-enabled User Modeling on Google+ and Twitter for Personalized Link Recommendations\",\"authors\":\"Guangyuan Piao, J. Breslin\",\"doi\":\"10.1145/2930238.2930278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study if reusing Google+ profiles can provide reliable recommendations on Twitter to resolve the cold start problem. Next, we investigate the impact of giving different weights for aggregating user profiles from two OSNs and present that giving a higher weight to the targeted OSN profile for aggregation allows the best performance in the context of a personalized link recommender system. Finally, we propose a user modeling strategy which combines entity-and category-based user profiles using with a discounting strategy. Results show that our proposed strategy improves the quality of user modeling significantly compared to the baseline method.\",\"PeriodicalId\":339100,\"journal\":{\"name\":\"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2930238.2930278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2930238.2930278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

在本文中,我们研究了重用Google+配置文件是否可以在Twitter上提供可靠的推荐来解决冷启动问题。接下来,我们研究了为聚合来自两个OSN的用户配置文件赋予不同权重的影响,并提出为聚合的目标OSN配置文件赋予更高的权重可以在个性化链接推荐系统的上下文中获得最佳性能。最后,我们提出了一种用户建模策略,该策略将基于实体和基于类别的用户配置文件与折扣策略相结合。结果表明,与基线方法相比,我们提出的策略显著提高了用户建模的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing Aggregated Semantics-enabled User Modeling on Google+ and Twitter for Personalized Link Recommendations
In this paper, we study if reusing Google+ profiles can provide reliable recommendations on Twitter to resolve the cold start problem. Next, we investigate the impact of giving different weights for aggregating user profiles from two OSNs and present that giving a higher weight to the targeted OSN profile for aggregation allows the best performance in the context of a personalized link recommender system. Finally, we propose a user modeling strategy which combines entity-and category-based user profiles using with a discounting strategy. Results show that our proposed strategy improves the quality of user modeling significantly compared to the baseline method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信