{"title":"在Google+和Twitter上分析聚合语义支持的用户建模,以进行个性化链接推荐","authors":"Guangyuan Piao, J. Breslin","doi":"10.1145/2930238.2930278","DOIUrl":null,"url":null,"abstract":"In this paper, we study if reusing Google+ profiles can provide reliable recommendations on Twitter to resolve the cold start problem. Next, we investigate the impact of giving different weights for aggregating user profiles from two OSNs and present that giving a higher weight to the targeted OSN profile for aggregation allows the best performance in the context of a personalized link recommender system. Finally, we propose a user modeling strategy which combines entity-and category-based user profiles using with a discounting strategy. Results show that our proposed strategy improves the quality of user modeling significantly compared to the baseline method.","PeriodicalId":339100,"journal":{"name":"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Analyzing Aggregated Semantics-enabled User Modeling on Google+ and Twitter for Personalized Link Recommendations\",\"authors\":\"Guangyuan Piao, J. Breslin\",\"doi\":\"10.1145/2930238.2930278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study if reusing Google+ profiles can provide reliable recommendations on Twitter to resolve the cold start problem. Next, we investigate the impact of giving different weights for aggregating user profiles from two OSNs and present that giving a higher weight to the targeted OSN profile for aggregation allows the best performance in the context of a personalized link recommender system. Finally, we propose a user modeling strategy which combines entity-and category-based user profiles using with a discounting strategy. Results show that our proposed strategy improves the quality of user modeling significantly compared to the baseline method.\",\"PeriodicalId\":339100,\"journal\":{\"name\":\"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2930238.2930278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2930238.2930278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analyzing Aggregated Semantics-enabled User Modeling on Google+ and Twitter for Personalized Link Recommendations
In this paper, we study if reusing Google+ profiles can provide reliable recommendations on Twitter to resolve the cold start problem. Next, we investigate the impact of giving different weights for aggregating user profiles from two OSNs and present that giving a higher weight to the targeted OSN profile for aggregation allows the best performance in the context of a personalized link recommender system. Finally, we propose a user modeling strategy which combines entity-and category-based user profiles using with a discounting strategy. Results show that our proposed strategy improves the quality of user modeling significantly compared to the baseline method.